Thermoelectric Power Factor for various temperature gradients in Nanocrystalline Composites

  • Manu Mitra University of Bridgeport
Keywords: Nanocrystalline, Nanotechnology, Nanocrystalline composites, thermoelectric effect

Abstract

Nanocrystalline are polycrystalline material that are very tiny particles with the dimension less than 100 nanometers. Nanocrystalline material can be estimated using x-ray diffraction.

In this paper; thermoelectric power factor for nanocrystalline graphs are plotted and compared with various temperature gradients (10K, 100K and 200K) such as seeback coefficient, electrical conductivity, power factor, subband plot, transmission plot, potential energy – centerline, electron density – centerline, current density – centerline, density of states – centerline and areal current density; values for graphs are also noted for further study.

References

[1] Mukherjee, A., & Mishra, R. (2001). Superplasticity. Encyclopedia of Materials: Science and Technology, 8977-8981. doi:10.1016/b0-08-043152-6/01618-1
[2] Ma, X., & Zhu, Y. (2016). Deformation Twinning in Nanocrystalline Metals. Reference Module in Materials Science and Materials Engineering. doi:10.1016/b978-0-12-803581-8.03990-4
[3] Guo, H., Xu, H., & Gong, S. (2014). Thermal barrier coatings. Developments in High Temperature Corrosion and Protection of Materials, 476-491. doi:10.1533/9781845694258.2.476
[4] Mukherjee, A., & Mishra, R. (2015). Superplasticity. Reference Module in Materials Science and Materials Engineering, 8977-8981. doi:10.1016/B978-0-12-803581-8.02886-1
[5] Lu, J., & Lu, K. (2003). Surface Nanocrystallization (SNC) of Materials and its Effect on Mechanical Behavior. Comprehensive Structural Integrity, 495-528. doi:10.1016/b0-08-043749-4/08037-x
[6] Xu, H., & Wu, J. (2011). New materials, technologies and processes in thermal barrier coatings. Thermal Barrier Coatings, 317-328. doi:10.1533/9780857090829.3.317
[7] Meyers, M., Mishra, A., & Benson, D. (2006). Mechanical properties of nanocrystalline materials. Progress in Materials Science, 51(4), 427-556. doi:10.1016/j.pmatsci.2005.08.003
[8] Terence Musho; Greg Walker (2015), "Thermoelectric Power Factor Calculator for Nanocrystalline Composites," https://nanohub.org/resources/nccpf. (DOI: 10.4231/D34746S5H)
[9] Rouse, M. (2008, June). What is nanocrystal? - Definition from WhatIs.com. Retrieved from https://whatis.techtarget.com/definition/nanocrystal
[10] Wikipedia. (2018, March 23). Nanocrystalline material. Retrieved from https://en.wikipedia.org/wiki/Nanocrystalline_material
[11] Chani MTS, Karimov KS, Asiri AM, Ahmed N, Bashir MM, Khan SB, et al. (2014) Temperature Gradient Measurements by Using Thermoelectric Effect in CNTs-Silicone Adhesive Composite. PLoS ONE 9(4): e95287. https://doi.org/10.1371/journal.pone.0095287
[12] Nielsch, K., Bachmann, J., Kimling, J., & Böttner, H. (2011). Thermoelectric Nanostructures: From Physical Model Systems towards Nanograined Composites. Advanced Energy Materials, 1(5), 713-731. doi:10.1002/aenm.201100207
[13] Dubey, N., & Leclerc, M. (2011). Conducting polymers: Efficient thermoelectric materials. Journal of Polymer Science Part B: Polymer Physics, 49(7), 467-475. doi:10.1002/polb.22206
[14] Sootsman, J., Chung, D., & Kanatzidis, M. (2009). New and Old Concepts in Thermoelectric Materials. Angewandte Chemie International Edition, 48(46), 8616-8639. doi:10.1002/anie.200900598
[15] Szczech, J. R., Higgins, J. M., & Jin, S. (2011). Enhancement of the thermoelectric properties in nanoscale and nanostructured materials. J. Mater. Chem, 21(12), 4037-4055. doi:10.1039/c0jm02755c
Published
2019-01-29
How to Cite
Mitra, M. (2019). Thermoelectric Power Factor for various temperature gradients in Nanocrystalline Composites. Innovative Engineering and Physical Sciences, 2(1), 65-92. Retrieved from http://scitecresearch.com/journals/index.php/ieps/article/view/1689
Section
Articles