High dimensional Schwartz Caudrey-Dobb-Gibbon system: Painleve integrability and exact solutions

  • Bo Ren Institute of Nonlinear Science, Shaoxing University, Shaoxing 312000 China
  • Jun Yu Institute of Nonlinear Science, Shaoxing University, Shaoxing 312000 China
  • Zhi Mei Lou Institute of Nonlinear Science, Shaoxing University, Shaoxing 312000 China
Keywords: High dimensional integrable system, CDG equation, Schwartz form, Painleve analysis, Exact solutions.

Abstract

The usual (1+1)-dimensional Schwartz Caudrey-Dobb-Gibbon equation is extended to the general (n+1)-dimensional system. A singularity structure analysis for the extension system is carried out. It demonstrates that the extension system admits the Painleve property. The exact solutions for the extension system are obtained with the Painleve-Backlund transformation. In the meanwhile, some properties of the soliton solutions for the extension system are shown by some figures

Downloads

Download data is not yet available.

References

Garnier, J., Kraenkel, R.A., Nachbin, A.: An optimal Boussinesq model for shallow water waves

interacting with a microstructure. Phys. Rev. E 76, 046311 (2007)

Shukla, P.K., Eliasson, B.: Nonlinear interactions between electromagnetic waves and electron plasma

oscillations in quantum plasmas. Phys. Rev. Lett. 99, 096401 (2007); Kamchatnov, A.M., Pitaevskii,

L.P., Stabilization of solitons generated by a supersonic flow of Bose-Einstein condensate past an

obstacle. Phys. Rev. Lett. 100, 160402 (2008); Lin, J., Ren, B., Li, H.M., Li, Y.S.: Soliton solutions

for two nonlinear partial differential equations using a Darboux transformation of the Lax pairs. Phys.

Rev. E 77, 036605 (2008)

Lou, S.Y., Lin, J., Yu, J.: (3+1)-dimensional integrable models under the meaning that they possess

infinite dimensional Virasoro-tpye symmetry algebra. Phys. Lett. A 201, 47 (1995); Lou S.Y., Hu,

X.B.: Infinitely many Lax pairs and symmetry constraints of the KP equation. J. Math. Phys. 38,

(1997)

Lou, S.Y.: Conformal invariance and integrable models. J. Phys. A: Math. Gen. 30, 4803 (1997)

Lou, S.Y., Xu, J.J.: Higher dimensional Painleve integrable models from the Kadomtsev-Petviashvili

equation. J. Math. Phys. 39, 5364 (1998); Lou, S.Y., Chen, C.L., Tang, X.Y.: (2+1)-dimensional

(M+N)-component AKNS system: Painlev´e integrability, infinitely many symmetries, similarity reductions

and exact solutions, J. Math. Phys. 43, 4078 (2002)

Lou, S.Y.: Searching for higher dimensional integrable models from lower ones via Painlev´e analysis.

Phys. Rev. Lett. 80, 5027 (1998)

Lin, J., Qian, X.M.: Higher dimensional integrable nodels with Conformal invariance. Commun. Theor.

Phys. 40, 259 (2003)

Toda, K., Yu, S.J.: A study of the construction of equations in (2+1) dimensions. Inverse Problems

, 1053 (2001)

Lou, S.Y.: KdV extensions with Painleve property. J. Math. Phys. 39, 2112 (1998)

Lou, S.Y.: High dimensional Schwartz KP equations. Z. Naturforsch. 55a, 401 (2000)

Ren, B., Lin, J.: Painleve properties and exact solutions for the high-dimensional Schwartz Boussinesq

equation. Chin. Phys. B 18, 1161 (2009)

Caudrey, P.J., Dodd, R.K., Gibbon, J.D.: A new hierarchy of Korteweg-de Vries equations. Proc. Roy.

Soc. Lond. A 351, 407 (1976); Dodd, P.K., Gibbon, J.D.: The prolongation strutrue of a higher-order

Korteweg-de Vries equations. Proc. Roy. Soc. Lond. A 358, 287 (1977)

Weiss, J.: The Painleve property for patial differential equation. J. Math. Phys. 24, 522 (1983); Weiss,

J.: The Painleve property for patial differential equation. II: Backlund transformation, Lax pairs, and

the Schwarzian derivative. J. Math. Phys. 24, 1405 (1983)

Jiang, B., Bi, Q.: A study on the bilinear Caudrey-Dodd-Gibbon equation. Nonlinear Analysis: Theory,

Methods Appl. 72, 4530 (2010)

Yu, X., Gao, Y.T., Sun, Z.Y., Liu, Y.: N-soliton solutions, B¨acklund transformation and Lax pair for

a generalized variable-coefficient fifth order Korteweg-de Vries equation. Phys. Scr. 81, 045402 (2010)

Salas, A.H., Hurtado, O.G., Castillo, J.E.: Computing multi-soliton solutions to Caudrey-Dodd-Gibbon

equation by Hirota’s method. Int. J. Phys. Sci. 6, 7729 (2011)

Fan, E.G.: Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic

method, J. Phys. A: Math. Gen. 35, 6853 (2002)

Radha, R., Kumar, C.S., Lakshmanan, M., Tang, X.Y., Lou, S.Y.: Periodic and localized solutions of

the long wave short wave resonance interaction equation. J. Phys. A: Math. Gen. 38, 9649 (2005)

Lou, S.Y., Hu, H.C., Tang, X.Y.: Interactions among periodic waves and solitary waves of the (n+1)-

dimensional Sine-Gordon field. Phys. Rev. E 71, 036604 (2005)

Published
2015-06-18
How to Cite
Ren, B., Yu, J., & Lou, Z. (2015). High dimensional Schwartz Caudrey-Dobb-Gibbon system: Painleve integrability and exact solutions. Boson Journal of Modern Physics, 1(1), 11-15. Retrieved from http://scitecresearch.com/journals/index.php/bjmp/article/view/232
Section
Articles