High dimensional Schwartz Caudrey-Dobb-Gibbon system: Painleve integrability and exact solutions
Abstract
The usual (1+1)-dimensional Schwartz Caudrey-Dobb-Gibbon equation is extended to the general (n+1)-dimensional system. A singularity structure analysis for the extension system is carried out. It demonstrates that the extension system admits the Painleve property. The exact solutions for the extension system are obtained with the Painleve-Backlund transformation. In the meanwhile, some properties of the soliton solutions for the extension system are shown by some figures
Downloads
References
Garnier, J., Kraenkel, R.A., Nachbin, A.: An optimal Boussinesq model for shallow water waves
interacting with a microstructure. Phys. Rev. E 76, 046311 (2007)
Shukla, P.K., Eliasson, B.: Nonlinear interactions between electromagnetic waves and electron plasma
oscillations in quantum plasmas. Phys. Rev. Lett. 99, 096401 (2007); Kamchatnov, A.M., Pitaevskii,
L.P., Stabilization of solitons generated by a supersonic flow of Bose-Einstein condensate past an
obstacle. Phys. Rev. Lett. 100, 160402 (2008); Lin, J., Ren, B., Li, H.M., Li, Y.S.: Soliton solutions
for two nonlinear partial differential equations using a Darboux transformation of the Lax pairs. Phys.
Rev. E 77, 036605 (2008)
Lou, S.Y., Lin, J., Yu, J.: (3+1)-dimensional integrable models under the meaning that they possess
infinite dimensional Virasoro-tpye symmetry algebra. Phys. Lett. A 201, 47 (1995); Lou S.Y., Hu,
X.B.: Infinitely many Lax pairs and symmetry constraints of the KP equation. J. Math. Phys. 38,
(1997)
Lou, S.Y.: Conformal invariance and integrable models. J. Phys. A: Math. Gen. 30, 4803 (1997)
Lou, S.Y., Xu, J.J.: Higher dimensional Painleve integrable models from the Kadomtsev-Petviashvili
equation. J. Math. Phys. 39, 5364 (1998); Lou, S.Y., Chen, C.L., Tang, X.Y.: (2+1)-dimensional
(M+N)-component AKNS system: Painlev´e integrability, infinitely many symmetries, similarity reductions
and exact solutions, J. Math. Phys. 43, 4078 (2002)
Lou, S.Y.: Searching for higher dimensional integrable models from lower ones via Painlev´e analysis.
Phys. Rev. Lett. 80, 5027 (1998)
Lin, J., Qian, X.M.: Higher dimensional integrable nodels with Conformal invariance. Commun. Theor.
Phys. 40, 259 (2003)
Toda, K., Yu, S.J.: A study of the construction of equations in (2+1) dimensions. Inverse Problems
, 1053 (2001)
Lou, S.Y.: KdV extensions with Painleve property. J. Math. Phys. 39, 2112 (1998)
Lou, S.Y.: High dimensional Schwartz KP equations. Z. Naturforsch. 55a, 401 (2000)
Ren, B., Lin, J.: Painleve properties and exact solutions for the high-dimensional Schwartz Boussinesq
equation. Chin. Phys. B 18, 1161 (2009)
Caudrey, P.J., Dodd, R.K., Gibbon, J.D.: A new hierarchy of Korteweg-de Vries equations. Proc. Roy.
Soc. Lond. A 351, 407 (1976); Dodd, P.K., Gibbon, J.D.: The prolongation strutrue of a higher-order
Korteweg-de Vries equations. Proc. Roy. Soc. Lond. A 358, 287 (1977)
Weiss, J.: The Painleve property for patial differential equation. J. Math. Phys. 24, 522 (1983); Weiss,
J.: The Painleve property for patial differential equation. II: Backlund transformation, Lax pairs, and
the Schwarzian derivative. J. Math. Phys. 24, 1405 (1983)
Jiang, B., Bi, Q.: A study on the bilinear Caudrey-Dodd-Gibbon equation. Nonlinear Analysis: Theory,
Methods Appl. 72, 4530 (2010)
Yu, X., Gao, Y.T., Sun, Z.Y., Liu, Y.: N-soliton solutions, B¨acklund transformation and Lax pair for
a generalized variable-coefficient fifth order Korteweg-de Vries equation. Phys. Scr. 81, 045402 (2010)
Salas, A.H., Hurtado, O.G., Castillo, J.E.: Computing multi-soliton solutions to Caudrey-Dodd-Gibbon
equation by Hirota’s method. Int. J. Phys. Sci. 6, 7729 (2011)
Fan, E.G.: Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic
method, J. Phys. A: Math. Gen. 35, 6853 (2002)
Radha, R., Kumar, C.S., Lakshmanan, M., Tang, X.Y., Lou, S.Y.: Periodic and localized solutions of
the long wave short wave resonance interaction equation. J. Phys. A: Math. Gen. 38, 9649 (2005)
Lou, S.Y., Hu, H.C., Tang, X.Y.: Interactions among periodic waves and solitary waves of the (n+1)-
dimensional Sine-Gordon field. Phys. Rev. E 71, 036604 (2005)
Copyright (c) 2015 Boson Journal of Modern Physics
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
TRANSFER OF COPYRIGHT
BJMP is pleased to undertake the publication of your contribution to Boson Journal of Modern Physics.
The copyright to this article is transferred to BJMP(including without limitation, the right to publish the work in whole or in part in any and all forms of media, now or hereafter known) effective if and when the article is accepted for publication thus granting BJMP all rights for the work so that both parties may be protected from the consequences of unauthorized use.