Meromorphic solutions to certain differential-difference equations

  • Yezhou Li School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
  • Wenxiao Niu School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
Keywords: Nevanlinna theory, meromorphic solutions, nonlinear, differential difference equation

Abstract

The aim of this paper is to investigate the growth and constructions of meromorphic solutions of the nonlinear differential-difference equation
$$f^n(z)+h(z)\Delta_cf^{(k)}(z)=A_0(z)+A_1(z)e^{\alpha_1z^q}+\cdots+A_m(z)e^{\alpha_mz^q},$$
where $n, m, q\in \mathbb{N}^+$, $\alpha_1,\cdots,\alpha_m$ are distinct nonzero complex numbers, $h(z)$ is a nonzero entire function and $A_j(z)~(0\leq j\leq m)$ are meromorphic functions. In particular, for $A_0(z)\equiv 0$, we give the exact form of meromorphic solutions of the above equation under certain conditions. In addition, our results are shown to be sharp.

Downloads

Download data is not yet available.

References

[1] H. Cartan. Sur les zeros des combinaisons lineaires de p fonctions holomorphes donn´ees. Mathematica(Cluj), 7:5-31, 1933.
[2] Y. M. Chiang, S. J. Feng. On the Nevanlinna characteristic of f(z + η) and difference equations in the
complex plane. Ramanujan J, 16(1): 105-129, 2008.
[3] Z. X. Chen. Complex differences and difference equations. Science Press, Beijing, 2014.
[4] G. G. Gundersen, W. K. Hayman. The strength of Cartan’s version of Nevanlinna theory. Bull. Lond.
Math. Soc., 36(4):433-454, 2004.
[5] W. K. Hayman. Meromorphic functions. Oxford Mathematical Monographs, Clarendon Press, Oxford,
1964.
[6] R. G. Halburd, R. J. Korhonen. Nevanlinna theory for the difference operator. Ann. Acad. Sci. Fenn.
Math., 31(2):463-478, 2006.
[7] I. Laine. Nevanlinna theory and complex differential equations. Walter de Gruyter. Berlin, 1993.
[8] P. Li, C. C. Yang. On the nonexistence of entire solutions of certain type of nonlinear differential
equations. J. Math. Anal. Appl., 320:827-835, 2006.
[9] P. Li. Entire solutions of certain type of differential equations. J. Math. Anal. Appl., 344:253-259, 2008.
[10] P. Li. Entire solutions of certain type of differential equations II. J. Math. Anal. Appl., 375:310-319,
2011.
[11] L. W. Liao, C. C. Yang, J. J. Zhang. On meromorphic solutions of certain type of non-linear differential
equations. Ann. Acad. Sci. Fenn., Math., 38:581-593, 2013.
[12] N. N. Liu, W. L¨u, T. Shen, C. C. Yang. Entire solutions of certain type of difference equations. J.
Inequal. Appl., 63, 2014.
[13] Z. Latreuch. On the existence of entire solutions of certain class of nonlinear difference equations.
Mediterr. J. Math., 14(3):115, 2017.
[14] X. Q. Lu, L. W. Liao, J. Wang. On meromorphic solutions of a certain type of nonlinear differential
equations. Acta Math. Sin., 33:1597-1608, 2017.
[15] X. M. Li, C. S. Hao, H. X. Yi. On the growth of meromorphic solutions of certain nonlinear difference
equations. Mediterr. J. Math., 18:56, 2021.
[16] X. M. Li, C. S. Hao, H. X. Yi. On the existence of meromorphic solutions of certain nonlinear difference
equations. Rocky Mountain J. Math., 51(5):1723-1748, 2021.
[17] Z. Q. Mao, H. F. Liu. On meromorphic solutions of nonlinear delay-differential equations. J. Math.
Anal. Appl., 509(1):125886, 2022.
[18] C. C. Yang, H. X. Yi. Uniqueness theory of meromorphic functions. Kluwer Academic Publishers. New
York, 2003.
[19] C. C. Yang, P. Li. On the transcendental solutions of a certain type of nonlinear differential equations.
Arch. Math., 82:442-448, 2004.
[20] C. C. Yang, I. Laine. On analogies between nonlinear difference and differential equations. Proc. Jpn.
Acad., Ser. A, 86:10-14, 2010.
[21] F. Zhang, N. N. Liu, W. L¨u, C. C. Yang. Entire solutions of certain class of differential-difference
equations. Adv. Differ. Equ., 150, 2015.
Published
2023-12-24
How to Cite
Li, Y., & Niu, W. (2023). Meromorphic solutions to certain differential-difference equations. Journal of Progressive Research in Mathematics, 20(1), 74-89. Retrieved from http://scitecresearch.com/journals/index.php/jprm/article/view/2215
Section
Articles