Traveling wave solutions and numerical solutions for a mBBM equation

  • Wei Ni School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
  • Yezhou Li School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
Keywords: mBBM equation; complex method; extended direct algebraic method; ODM

Abstract

In this paper, some exact meromorphic solutions and generalized trigonometric solutions of the space-time fractional modified Benjamin-Bona-Mahony (mBBM) equation are established by a new transformation and reliable methods. Moreover, some numerical solutions are obtained by using the optimal decomposition method (ODM), and their accuracy is shown in tables and images.

Downloads

Download data is not yet available.

References

[1] T.B. Benjamin, J.L. Bona, J.J. Mahony: Model equations for long waves in nonlinear dispersive systems, Philos. Trans. R. Soc. Lond. Ser. A. 272, 47-78 (1972).
[2] V. Varlamov, Y. Liu: Cauchy problem for the Ostrovsky equation, Discrete Continuous Dynam. Syst. 10, 731 (2004) .
[3] J.C. Saut, N. Tzvetkov: Global well-posedness for the KP-BBM equations, Appl. Math. Res. eXpress. 2004, 1-16 (2004).
[4] E. Yusufoğlu: New solitonary solutions for the MBBM equations using Exp-function method, Phys. Lett. A. 372, 442-446 (2008).
[5] S. Abbasbandy, A. Shirzadi: The first integral method for modified Benjamin–Bona–Mahony equation, Commun. Nonlinear Sci. Numer. Simul. 15, 1759-1764 (2010).
[6] E.M.E. Zayed, S. Al-Joudi: Applications of an extended (G′/G)-expansion method to find exact solutions of nonlinear PDEs in mathematical physics, Math. Prob. Engr. 2010, 19 (2010).
[7] J.F. Alzaidy: Fractional sub-equation method and its applications to the space–time fractional differential equations in mathematical physics, Br. J. Math. Comput. Sci. 3, 153-163 (2013).
[8] A. Bekir, Ö. Güner, Ö. Ünsal: The first integral method for exact solutions of nonlinear fractional differential equations, J. Comput. Nonlinear Dyn. 10, 021020 (2015).
[9] A.H. Arnous: Solitary wave solutions of space-time FDEs using the generalized Kudryashov method, Acta univ. apulensis. 42, 41-51 (2015).
[10] S. Javeed, S. Saif, A. Waheed, D. Baleanu: Exact solutions of fractional mBBM equation and coupled system of fractional Boussinesq-Burgers, Results phys. 9, 1275-1281 (2018).
[11] M.T. Islam, M.A. Akbar, M.A.K. Azad: The exact traveling wave solutions to the nonlinear space-time fractional modified Benjamin-Bona-Mahony equation, J. Mech. Cont. Math. Sci. 13, 56-71 (2018).
[12] J.V.D.C. Sousa, E.C. de Oliveira: A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties, Int. J. Anal. Appl. 16, 83-96 (2017).
[13] A. Eremenko: Meromorphic solutions of equations of Briot-Bouquet type, Teor. Funkc. Funkc. Anal. IhPrilozh. 38, 48-56 (1982).
[14] A. Eremenko, L.W. Liao, T.W. Ng: Meromorphic solutions of higher order Briot–Bouquet differential equations, Math. Proc. Cambridge Philos. Soc. 146, 197-206 (2009).
[15] Y.Y. Gu, C.F. Wu, X. Yao, W.J. Yuan: Characterizations of all real solutions for the KdV equation and WR, Appl. Math. Lett. 107, 106446 (2020).
[16] W.J. Yuan, Y.D. Shang, Y. Huang, H. Wang: The representation of meromorphic solutions of certain ordinary differential equations and its applications, Sci. Sinica Math. 43, 563–575 (2013).
[17] S. Lang: Elliptic functions, Springer, New York 1987.
[18] W. Yuan, F. Meng, Y. Huang, Y. Wu: All traveling wave exact solutions of the variant Boussinesq equations, Appl. Math. Comput. 268, 865-872 (2015).
[19] Y. Gu, W. Yuan, N. Aminakbari, Q. Jiang: Exact solutions of the Vakhnenko-Parkes equation with complex method, J. Funct. Spaces. 2017, 6 (2017).
[20] H. Rezazadeh, H.Tariq, M. Eslami, M. Mirzazadeh, Q. Zhou: New exact solutions of nonlinear conformable time-fractional Phi-4 equation, Chin. J. Phys. 56, 2805-2816 (2018).
[21] M.A. Bashir, A.A. Moussa: The cotha(ξ) Expansion Method and its Application to the Davey-Stewartson Equation, Appl. Math. Sci. 8, 3851-3868 (2014).
[22] Z. Odibat: An optimized decomposition method for nonlinear ordinary and partial differential equations, Phys. A. 541, 123323 (2020).
Published
2022-07-04
How to Cite
Ni, W., & Li, Y. (2022). Traveling wave solutions and numerical solutions for a mBBM equation. Journal of Progressive Research in Mathematics, 19(2), 1-14. Retrieved from http://scitecresearch.com/journals/index.php/jprm/article/view/2145
Section
Articles