Effect of Partial Replacement of Pt-Based Catalysts with Fe- and Co-for Oxygen Evolution Reaction in Pem Water Electrolysis: A Combined Theoretical and Experimental Study

  • Antonia Stoyanova Institute of Electrochemistry and Energy Systems BAS, 10 G. Bonchev Str., BG-1113 Sofia.
  • Mazharul M. Islam Mulliken Center for Theoretical Chemistry, Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstra 46, 53115 Bonn, Germany.
  • Galin Borisov Institute of Electrochemistry and Energy Systems BAS, 10 G. Bonchev Str., BG-1113 Sofia.
  • Thomas Bredow Mulliken Center for Theoretical Chemistry, Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstrae 46, 53115 Bonn, Germany.
  • Elefteria Lefterova Institute of Electrochemistry and Energy Systems BAS, 10 G. Bonchev Str., BG-1113 Sofia.
  • Evelina Slavcheva Institute of Electrochemistry and Energy Systems BAS, 10 G. Bonchev Str., BG-1113 Sofia.
Keywords: PEM Water Electrolysis, Quantum-Chemical Calculations, Density Functional Theory, Adsorption and Co-Adsorption, Pt-Based Binary Compounds, Titanium Dioxide.

Abstract

The adsorption of Ptn (n = 1−4) clusters and co-adsorption of Ptn-Co and Ptn-Fe on the defect-free anatase TiO2(101) surface have been studied theoretically at density functional theory (DFT) level. The most stable configurations are observed due to Pt2 and Pt3-clusters adsorbed on the titania surface. The electronic structure analyses show that the Fermi level is pinned by Pt, which reduces the band gap from ~3 eV of the clean surface to significantly less than 1 eV for Pt3. For the co-adsorption of Fe-Pt and Co-Pt, there is a strong bond formation of Fe and Co with the surface O and Ti atoms. In both cases, Fe and Co stay far away from the Pt atom. Due to strong interaction of adsorbed elements with Ti, the co-adsorption energy is larger than the corresponding Pt3 adsorption energy. The higher stability of the co-adsorption of Fe-Ptn compared to the Co-Ptn is in agreement with the electrochemical experimental results which confirm that Fe-containing catalysts deposited on titanium dioxide support (Ebonex) will be higher efficient than Co-containing ones toward oxygen evolution in proton-exchange membrane water electrolysis. The observed effect can be explained with formation of solid solution between the metallic components and a realization of synergetic effect.

Downloads

Download data is not yet available.

References

P. Millet P., S. Grigoriev, V.N. Fateev, A. Aukauloo and C. Etiévant, 2011, International Journal of Hydrogen Energy, 36, 4134- 4142.

M. Datta, K. Kadakia, O. Velikokhatnuyi, P. Jampani, S. Chung, J. Poston, A. Manivannan and P. Kumta, 2013, Journal of Materials Chemistry A, 1, 4026- 4037.

R. Adzic, J. Sasaki, M. B. Vukmirovic, M. Shao, J. X. Wang, A. Nilekar, M. Mavrikakis, J. Valerio, F. Uribe, 2007, Topics in Catalysis, 46, 249- 262.

M. Vukmirovic, J. Zhang, K. Sasaki, A. Nilekar, F. Urib, M. Mavrikakis and R. Adzic, 2007, Electrochimica Acta, 52, 2257 – 2263.

N. Elezovic, B. Babic, V. Radmilovic, Lj. Vracar and N. Krstyajic, 2009, Electrochimica Acta, 54, 2404 – 2409.

P. Millet, N. Dragoe, S. Grigoriev, V. Fateev and C. Etievant, 2009, International Journal of Hydrogen Energy, 34, 4974 – 4982.

E. Slavcheva, I. Radev, S. Bliznakov, G. Topalov, P. Andreev and E. Budevski, 2007, Electrochimica Acta, 52, 3889 -3894.

E. Slavcheva E., V. Nikolova, T. Petkova, E. Lefterova, I. Dragieva, T. Vitanov and E. Budevski, 2005, Elecrochimica Acta, 50, 5444 – 5448.

E. Antolini, E. R. Gonzalez, 2009, Solid State Ionics, 180, 746 – 763.

C. Henry, 1998, Surface Sciences Report, 31, 235 – 325.

J. Perdew and Y. Wang, 1992, Phys. Rev. B, 45, 13244 – 13249.

J. Perdew, J. Chevary, S. Vosko, K. Jackson, M. Penderson, D. Singh and C. Fiolhais, 1992, Physical Review B, 1992, 46, 6671

R. Dovesi R., V. Saunders, C. Roetti, R. Orlando, C. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll and N. Harrison, I. J. Bush, P. D’Arco, and 31 M. Llunell, CRYSTAL09 User's Manual (University of Torino, Torino, 2009)

M. Islam, A. Gerson and T. Bredow, 2011, ChemPhysChem, 12, 3467 - 3473.

M. Islam, T. Bredow and A. Gerson, 2007, Physical Review B, 76, 045217 - 045219.

K. Doll, 2004, Surface Science, 573, 464 - 473.

D. Andrae, U. Haussermann, M. Dolg, H. Stoll, H. Preuss, Theoretical Chemical Acta, 1990, 77, 123- 141.

R. Dovesi, F. Freyria Fava, C. Roetti and V. Saunders, 1997, Faraday Discussions, 106, 173 -187.

A. Stoyanova, G. Borisov, E. Lefterova, E. Slavcheva, 2012, International Journal of Hydrogen Energy, 37, 16515 -16521.

A. Stoyanova, G. Borisov, E. Lefterova, Е. Slavcheva, Bulgarian Chemical Communications, 2013, 45, 191 - 195.

G. Borisov, A. Stoyanova, E. Lefterova, Е. Slavcheva, Bulgarian Chemical Communications, 2013, 45, 186 – 190.

Y. Han, L. Chang-jun and Ge Qingfeng, 2006, Journal of Physical Chemistry B, 110, 7463 – 7472.

K. Naeem and F. Ouyang, 2010, Physica B, 405, 221 – 226.

G. Borisov, A. Stoyanova, E. Lefterova, S. Vassilev, E. Slavcheva, 2015, Journal of Progressive Research in Chemistry, 3, 97 - 108.

W. Li, W. Zhou, H. Li, Zh. Zhou, B. Zhou, G. Sun and Q. Xin, 2005, Electrochimica Acta, 49, 1045 – 1055.

Published
2016-05-04
How to Cite
Stoyanova, A., M. Islam, M., Borisov, G., Bredow, T., Lefterova, E., & Slavcheva, E. (2016). Effect of Partial Replacement of Pt-Based Catalysts with Fe- and Co-for Oxygen Evolution Reaction in Pem Water Electrolysis: A Combined Theoretical and Experimental Study. Journal of Progressive Research in Chemistry, 3(3), 158-165. Retrieved from http://scitecresearch.com/journals/index.php/jprc/article/view/714
Section
Articles