Volumetric and Adiabatic Compressibility Behaviour of Aqueous Haemoglobin Solution in Presence of Sugar
Abstract
Measurements of density, ultrasonic velocity were made for investigating the intermolecular interactions. As D- glucose-Haemoglobin–water systems. These systems were chosen due to their vital role in the life of living organisms for such studies. Using density and ultrasonic velocity data, various derived parameters such as adiabatic compressibility (βs), compressibility lowering (Δβs), relative change in compressibility (Δβs/β0), apparent molal volume (фv), apparent molal adiabatic compressibility (фk), and partial molal volume (фv0), of aqueous Haemoglobin solutions in presence of sugar were obtained for each of the concentrations studied in the temperature range: 303.15-328.15k. Temperature dependence of these data suggests the presence of solute-solute, and solute- solvent interactions as well as on the extent of salvation of the protein molecules in presence of sugar. Therefore, by observing a decrease in the compressibility of the solution and the increase in the apparent molal volume of the protein after the addition of sugar, we can say that the extent of denaturation of protein is reduced and its stabilization was taken place.
Downloads
References
2. J.F. Brandts; R.J. Oliverira , and C. Westort.Biochemistry,9 1038-1047 (1970)
3. S.A. Hawley, Biochemistry, 10, 2436-2442 (1971).
4. A. Zipp and W. Kauzmann. Biochemistry 12, 4217-4227 (1973).
5. W.F. Harrington and G. Kegeles , Methods Enzymol.; 27, 306-345 (1973) .
6. P.F. Fathey , D.W. .Kupke, and J.W. Beams, Proc. Natl. Acad Sci. U.S.A., 63,555 (1969).
7. D.S Scharp , N. Fujita , K. Kinzie and J.B. Lfft, Biopolymers, 17,817-836 (1978) .
8. B. Jacobson, Ark, Kemi 2,177-210 (1950).
9. Y. Miyahara , Bull, Chem. Soc. Jpn; 29,741-742 (1956) .
10. W. Kauzmann. Adv. Protein Chem. 14,1-63 (1959).
11. K. Gekko, H. Noguchi, J. Phys. Chem.; 832706 (1979).
12. K. Gekko, Y. Hasogawa , Biochemistry, 25,6563 (1986) .
13. C.D. Ball , D.T. Hardt , W.T. Duddles, J. Biol. Chem. 151, 163 (1943).
14. R.B. Simpson, W. Kauzmann. J.Am. Chem. Soc. 75, 5, 139 (1953).
15. S.V. Gerlsma, E.R. Stuur, Int. J. Peptide Protein Res. 4,377 (1972).
16. J.W.Donowan, J. Sci. Food Agric. 28,571 (1977).
17. R.D. Schmid , Adv. Biochem. Eng. 12, 41 (1979).
18. T. Arakawa , S.N. Timasheff, Biochemistry, 21,6536 (1982).
19. A.M Klibanoy , Adv. Appl. Microbiol.29,1 (1983).
20. F. Ahmad, C.C. Bigelow, J. Protein Chem 5,355(1982).
21. J.F. Back, D. Oakenfull, M.B. Smith, Biochemistry 18,5191 ( 1979).
22. K. Demetriades, D.J.Mc Clements , J. Agric. Food Chem. 46, 3936 (1998).
23. Lumry. R.; Gregory, R.B. In the Fluctuating Enzyme; Welch, G.R.; Ed.; Wiley; New York , 1986.
24. J.D. Pandey, A. Misra, N. Hasan and K. Misra, Acoust. Lett.; 15,105(1991)
25. S.N. Rao, K.V. Rao and K.S. Rao, Ind. J. Pure and Appl. Phys.; 11,407 (1973).
26. T. Ogawa , M Yasuda and K. Mizutani, Bill. Chem. Soc. Jpn. 57,662(1984)
27. P. Monsan, D. Combes, Methods in Enzymology, Vol. 137 Academic Press, New York, 1988, pp. 584-598.
Copyright (c) 2020 Journal of Progressive Research in Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.