Stimulatory Effects of Salicylic Acid and Benzothiadiazole on Phenolic Compounds Biosynthesis in Cotton Leaves [Gossypium Hirsutum L (Malvaceae)]

  • Tanoh Hilaire Kouakou Nanguy Abrogoua University
Keywords: Cotton, benzothiadiazole (BTH), elicitors, Gossypium hirsutum, phenolic compounds, salicylic acid (SA).

Abstract

Impact of benzothiadiazole (BTH) and salicylic acid (SA), as natural defense stimulators, was tested on phenolic compounds biosynthesis in cotton (Gossypium hirsutum L., cv. Y764AG). Cotton leaves were spread with BTH and SA at six concentrations (1.0, 2.5, 5.0, 8.0 and 10 mM) and incubated during 24, 48, 72 and 96 h. Plant-treated with 1.0 mM BTH and 2.5 mM SA, respectively 96 and 24 h of incubation time induced the highest levels of phenolic compounds for each type of stimulator. These both concentrations were then combined for the co-treatment of the plants, with the previous incubation times retained. Results showed that co-treatment with BTH and SA was not beneficial for the induction of phenolic compounds compared to elicitors used alone. 

Downloads

Download data is not yet available.

Author Biography

Tanoh Hilaire Kouakou, Nanguy Abrogoua University

UFR Sciences de la Nature

Laboratoire de Biologie et Amélioration des Productions Végétales

References

Munro, JM (1994). The cotton crop in insect pest of cotton. In GA Matthews & JP Tunstall (Ed.). CAB International (pp 3-26).

Wallingford, UK.

Estur, G (2005). La compétitivité du coton africain dans le marché mondial. ICAC (3p), Washingtown DC,USA.

Coulibaly, A (2014). Current situation and challenges of the die cotton of the Ivory Coast. International Consultative Committee of Cotton (CCIC), Thessalonique, Greece.

Vaissayre, M (1994). Ten years of experimentation for the protection of the cotton plant in Côte d'ivoire (1981-1990). Document CIRAD /CA, 3(93), 1-57.

Sayegh, M (2009). The resistance of the cotton plant Gossypium hirsutum to the bacteriose caused by Xanthomonas camprestris pathovar malvacearum role of the GhLOX in the gene hypersensitive reaction. PhD, Institut National Polytechnique of Lorraine-Nancy France.

Liao, C, Heckel, DG & Akhurst, R (2002). Toxicity of Bacillus thuringiensis insecticidal proteins for Helicoverpa will armigera and Helicoverapa will punctigera (Lepidoptera:Noctuidae), major pests of knitting machine. Newspaper of Invertebrate Pathology, 80, 55- 63.

Faurie, B, Cluzet, S, Corio-Costet, MF & Merillon, JM (2009). Methyl jasmonate/etephon cotreatment synergically induces stilbene production in Vitis vinifera cell suspension but fails to trigger resistabce to Erysiphe necator. Journal International Sciences Vigne Vin, 43 (2), 99-110.

Amari, LND, Sherif, M, Kouakou, HT, Camara, B, Koné, D (2014). Salicylic acid and acibenzolar-s-methyl induced resistance against toxic effect of juglone, has toxin of Mycosphaerella fijiensis causal agent of banana black leaf streak disease. Journal of Advanced in Agriculture, 3(3), 204-217.

Konan, YKF, Kouassi, KM, Kouakou, KL, Koffi, E, Kouassi, KN, Sekou, D, Kone, M & Kouakou, TH (2014). Effect of Methyl jasmonate on phytoalexins biosynthesis and induced disease resistance to Fusarium oxysporum f. sp. vasinfectum in Cotton (Gossypium hirsutum L.). International Journal of Agronomy, (2014), 1-11.

Daire, X, Poinssot, B, Bentejc, M, Silue, M & Pugin, A (2002). Stimulation of defenses of the vine against the pathogenic ones, the encouraging results with respect to the mildew. Phytoma, 548, 24-26.

Amari, LND (2012). Etude des mécanismes de résistance des bananiers à la maladie des Raies Noires et stratégie de gestion de l’infection par la stimulation des défenses naturelles. PhD, Félix Houphouët Boigny University, Côte d’Ivoire.

Benhamou, N (1996). Elicitor-induced seedling defence pathways.Trends in Seedling Sciences, 1, 233-240.

Grayer, RJ & Kokubun, T (2001). Seedling fungal interactions: the search for phytoalexins and other antifungal compounds from higher plants. Phytochemistry Seedlings, 56 (3), 253-263.

Pedras, MSC & Adio, AM (2008). Phytoalexins and phytoanticipins from the wild crucifers Thellungiella halophila and Arabidopsis thaliana: rapalexin A, wasalexins and camalexin. Phytochemistry, 69(4), 889-893.

Yin, Z, Sadok, A, Sailem, H, McCarthy, A, Xia, X, Li, F, Garcia, MA, Evans, L & Barr AR (2013). A screen for morphological complexity identifies regulators of switch-like transitions between discrete cell shapes. Nature Cell Biology, 15(7), 860-871.

Belhadj, A, Saigne, C, Telef, N, Cluzet, S, Bouscaut, J & Corio-Costet, MF (2005). Methyl jasmonate induces defense responses in grapevine and triggers protection against erysiphe necator. Journal of Agricultural and Food Chemistry, 54 (24), 9119-9125.

Ahuja, I, Kissen, R & Bones, AM (2012). Phytoalexins in defense against pathogens. Trends Plant in Science, 17(2), 73-90.

Kouakou, TH (2003). Contribution à l’étude de l’embryogenese somatique chez le cotonnier (Gossypium hirsutum L.) Evolution de quelques paramètres biochimiques au cours de la callogenèse et de cultures de suspensions cellulaires. Thesis, University of Cocody, Abidjan, Côte d'Ivoire.

Kouakou, TH (2009). Somatic embryogenesis at the cotton plant (Gossypium hirsutum L.): variation of the phenolic compounds during callogenesis and the culture of the cellular suspensions. PhD, University of Abobo-Adjamé, Abidjan, Côte d'Ivoire.

Konan YKF (2015). Stimulation des défenses naturelles du cotonnier (Gossypium hirsutum L., Malvaceae) par le méthyl jasmonate et l’éthéphon : Effet sur la biosynthèse des composés phénoliques et sur la résistance à Fusarium oxysporum f. sp. vasinfectum, agent causal de la fusariose. PhD, Nangui Abrogoua University, Abidjan, Côte d’Ivoire.

Koffi, KK, Anzara, GK, Malice, M, Djè, Y, Baudoin, JP & Bi, IZ (2009). Morphological and allozyme variation in a collection of Lagenaria siceraria (Molina) Standl. from Côte d’Ivoire. Biotechnologie, Agronomie, Société et Environnement, 13(2), 257-270.

SODEXAM (2016). Données météorologiques de 1987-2015 d’Abidjan. Société d´exploitatation et de développement aéroportuaire, aéronautique et Météorologiques : direction de la Météorologie Nationale, Port-Bouët-Abidjan (Côte d´Ivoire).

Siriwoharn, T, Wrolstad, RE, Finn, CE & Pereira, CB (2004). Influence de cultivar, de maturité, et de prélèvement sur des anthocyanines de mûre (hybrides de Rubus L.), le polyphenolics, et des propriétés antioxydantes. Journal of Agricultural and Food Chemistry, 52(26), 8021-8030.

Inbar, M, Doostdar, H, Gerling, D & Mayer, RT (2001). Induction of systemic acquired resistance in knitting machine by BTH has negligible effect on phytophagous insects. Entomologia Experimentalis et Applicata, 99, 65-70.

Soler, A, Token, EA, Corbion, C, Luce, MS & Quénéhervé, P (2012). Les défenses naturelles des plantes contre les bioagresseurs: un nouvel atout dans la mise au point de systèmes de cultures plus écologiques. Cahier du Pram, 11, 31-35.

Dogbo, DO, Bekro, M A, Bekro, YA, Gogbeu, SJ, Traore, A & Sie, RS (2007). Influence de l’acide salicylique sur l’activité des polyphénoloxydases et l’accumulation des composés phénoliques chez le manioc (Manihot esculenta Crantz ). Afrique Science, 03(2), 243-258.

Vanacker, H, Foyer, CH & Carver, TLW (1999). Changes in apoplastic antioxidants induced by powdery mildew attack in oat genotypes with race non-specific resistance. Planta, 208, 444-452.

Beckers, GJM & Spoel, SH (2006). Fine-tuning plant defence signalling: salicylate versus jasmonate. Plant Biology, 8(1), 1-10.

Sood, N, Sohal, BS & Lore, JS (2013). Foliar application of benzothiadiazole and salicylic acid to combat sheath blight disease of rice. Rice Science, 20(5), 349-355.

Esmailzadeh, M, Soleimani, MJ & Rohani, H (2008). Exogenous applications of salicylic acid for inducing systemic acquired resistance against tomato stem canker disease. Journal of Biological Sciences, 8, 1039-1044.

An, C & Mou, Z (2014). Salicylic acid and defense responses in plants. In Tran LSP & Pal, S (Ed.), Phytohormones: A Window to Metabolism, Signaling and Biotechnological Applications. New York: Springer Science and Business Media.

Gorlach, J, Volrath, S, Knauf-Beiter, G, Hengy, G & Beckhove, U (1996). Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell, 8, 629-643.

Wendehenne, D, Durner, J, Chen, Z & Klessig, DF (1998). Benzothiadiazole, an inducer of plant defenses, inhibits catalase and ascorbate peroxidase. Phytochemistry, 47(4), 651-657.

Yi, HS, Yang, JW, Choi, HK, Ghim, SY & Ryu, CM (2012). Benzothiadiazole-elicited defense priming and systemic acquired resistance against bacterial and viral pathogens of pepper under field conditions. Plant Biotechnology Reports, 6(4), 373-374.

Hidalgo, W, Chandran, NJ., Menezes, RC, Otalvaro,F. & Schneider, B (2016). Phenylphenalenones protect banana plants from infection by Mycosphaerella fijiensis and are deactivated by metabolic conversion. Plant, Cell and Environment, 39, 492-513.

Bektas, Y & Eulgem, T (2014). Synthetic plant defense elicitors. Frontiers in Plant Science, 5(804), 1-17.

Lyon, GD, Reglinski, T & Newton, AC (1995). Novel disease control compounds: the dB potential to immunize seedlings against infection. Patholology Seedling, 44, 407- 427.

Published
2017-11-13
How to Cite
Kouakou, T. (2017). Stimulatory Effects of Salicylic Acid and Benzothiadiazole on Phenolic Compounds Biosynthesis in Cotton Leaves [Gossypium Hirsutum L (Malvaceae)]. Journal of Progressive Research in Chemistry, 5(2), 247-254. Retrieved from http://scitecresearch.com/journals/index.php/jprc/article/view/1325
Section
Articles