Modeling of Reference Evapotranspiration in Middle South Saurashtra Region of India Using Dominant meteorological Variables

  • Manoj Gundalia Gujarat Technological University, Ahmadabad, India
  • Mrugen Dholakia L. D. College of Engineering, Ahmadabad, India
Keywords: Reference evapotranspiration, Meteorological variables, FAO-Penman-Monteith method, Middle South Saurashtra region.

Abstract

In this paper attempt is made to estimate reference evapotranspiration (ETo) from standard meteorological observations. The FAO-56 Penman-Monteith method is the most physical, reliable and mostly used as a standard to verify other empirical methods. However, it needs a lot of different input parameters. Hence, in the present study, a model based on most dominant meteorological variables influencing ETo is proposed to estimate ETo in the Middle South Saurashtra region of Gujarat (India). The performance of five different alternative methods and proposed model is compared keeping the FAO-56 Penman-Monteith method as reference.

The models are evaluated by using Nash-Sutcliffe efficiency coefficient (E), (R2), (dr), (RSR) and (MAE) statistical criterions. The results show that the developed model and Hargreaves and Samani (1985) method provide the most reliable results in estimation of (ETo), and it can be recommended for estimating (ETo) in the study region.

 

Downloads

Download data is not yet available.

References

[1] Abdelhadi, A. W., Hata, T., Tanakamaru, T. A., & Tariq, M. A. (2000). Estimation of crop water requirements
in arid region using Penman-Monteith equation with derived crop coefficients. A case study in Acala cotton in
Sudan Gezira irrigated scheme. Agric. Water Manage: 45 (2), 203-214.
[2] Abdulai, B. I., Stigter, C. J., Ibrahim, A. A., Adeeb, A. M., & Adam, H. S. (1990). Evaporation calculations for
Lake Sennar. Neth. J. Agric. Sci: 38, 725-730.
[3] Allen, R. G. (2000). REF-ET for Windows: reference evapotranspiration calculator version 2.0, University of
Idaho Research and Extension Center, Kimberly. ID. Current online version:
http://www.kimberly.uidaho.edu/refet/.
[4] Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop Evapotranpiration: Guildlines for computing
crop water requirements FAO, Irrigation and Drainage Paper No 56. Food and Agriculture Organisation, Land
and Water. Rome, Italy: pp 300.
[5] Allen, R. G., Smith, M. Pereira, L. S., & Perrier, A. (1994b). An update for the calculation of reference
evapotranspiration. ICID Bulletin: 43 (2), 35-92.
[6] Allen, R. G., Smith, M., Perrier, A., & Pereira, L. S. (1994a). An update for the definition of reference
evapotranspiration. ICID Bulletin: 43 (2), 1-34.
[7] Berengena, J., & Gavilan, P. (2005). Reference evapotranspiration estimation in a highly advective semiarid
environment. J. Irrig. Drain. Eng: 121 (6), 427-435.
[8] Beyazgul, M., Kayam, Y., & Engelsman, F. (2000). Estimation methods for crop water requirements in the
Gediz Basin of Western Turkey. J. Hydrol: 229 (1-2), 19-26.
[9] DelghaniSanij, H., Yamamoto, T., & Rasiah, V. (2004). Assessment of evapotranspiration models for use in
semi-arid environments, Agric. Water Manage: 64 (2), 91-106.
[10] Gavilan, P., Lorite, I. J., Tornero, S., & Berengena, J. (2006). Regional calibration of Hargreaves equation for
estimating reference ET in a semiarid environment, Agric. Water Manage: 81 (3), 257-281.
[11] Hargreaves, G. H. (1983). Discussion of 'Application of Penman wind function' by Cuenca, R. H. and
Nicholson, M. J., J. Irrig. and Drain. Engrg: ASCE 109 (2), 277-278.
[12] Hargreaves, G. H., & Allen, R. G. (2003). History and evaluation of Hargreaves evapotranspiration equation. J.
Irrig. Drain.Eng: 129 (1), 53-63.
[13] Hargreaves, G. H., & Samani, Z. A. (1985). Reference crop evapotranspiration from temperature. Appl Engine
Agric: 1(2), 96–99.
[14] Hussein, A. S. A. (1999). Grass ET estimates using Penman-type equations in Central Sudan. J. Irrig. Drain.
Eng: 125 (6), 324-329.
[15] Itenfisu, D., Elliott, R. Allen, R. G., & Walter, I. A. (2000). Comparison of reference evapotranspiration
calculation across range of climates. In: Evans, R. G., Benham, B. L., & Trooien, T. P. (Eds). (2000).
Proceedings of the 4th Decennial Irrigation Symposium (ASAE), 14-16 November 2000, at Phoenix, AZ.,
U.S.A., 216-227.
[16] Jensen, M. E., & Haise, H. R. (1963). Estimating evapotranspiration from solar radiation. J. Irrig. Drainage:
Div. ASCE, 89, 15-41.
[17] Keskin, M. E., & Terzi, O. (2006). Evaporation estimation models for Lake Egirdir, turkey. Hydrol. Process:
20, 2381-2391.
[18] Legates, D. R., & McCabe, G. J. (1999). Evaluating the use of “goodness-of-fit” measures in hydrologic and
hydroclimatic model validation. Water Resources Res: 35 (1), 233-241.
[19] Linacre, E. T. (1993). Data-sparse estimation of lake evaporation, using a simplified penman equation.
Agricultural and Forest Meteorology: 64, 237-256.
[20] Lopez-Urrea, R., Martín de Santa Olalla, F., Fabeiro, C., & Moratalla, A. (2006). Testing evapotranspiration
equations using lysimeter observations in a semiarid climate. Agricultural Water Management: 85, 15–26.
[21] Makkink, G. F. (1957). Testing the Penman formula by means of lysimeters. Journal of the Institution of Water
Engineers: 11, 277-28.
[22] Priestley, C. H. B., & Taylor, R. J. (1972). On the assessment of the surface heat flux and evaporation using
large-scale parameters. Monthly Weather Review: Division of Atmospheric Physics,Commonwealth Scientific
and Industrial Research Organization, Aspendale, Victoria, Australia, 100, 81–92.
[23] Todorovic, M. (1999). Single-layer evapotranspiration model with variable canopy resistance. J. Irrig. Drain.
Eng: 125 (5), 235-245.
[24] Trajkovic, S. (2005). Temperature-based approaches for estimating reference evapotranspiration. J. Irrig. Drain. Eng: 133 (4), 316-323.
[25] Trajkovic, S., & Kolakovic, S. (2009). Evaluation of reference evapotranspiration equations under humid
conditions. Water Resour. Manage: 23, 3057-3067.
[26] Turc, L. (1961). Estimation of irrigation water requirements, potential evapotranspiration: a simple climatic
formula evolved up to date. Ann. Agron: 12, 13-49.
[27] Tyagi, N. K., Sharma, D. K., & Luthra, S. K. (2003). Determination of evapotranspiration for maize and
berseem clover. Irrig. Sci: 21 (4), 173-181.
[28] Ventura, F., Spano, D., Duce, P., & Snyder, R. L. (1999). An evaluation of common evapotranspiration
equation. Irrig. Sci.: 18 (4), 163-70.
[29] Willmott, C. J., Robeson S. M., & Matsuura, K. (2012). A refined index of model performance. Int. J. Climatol:
32, 2088–2094.
Published
2015-10-29
How to Cite
Gundalia, M., & Dholakia, M. (2015). Modeling of Reference Evapotranspiration in Middle South Saurashtra Region of India Using Dominant meteorological Variables. Boson Journal of Modern Physics, 2(1), 73-83. Retrieved from http://scitecresearch.com/journals/index.php/bjmp/article/view/388
Section
Articles