Zero field splitting parameter of Mn2+ doped guanidine zinc sulphate crystal -a theoretical study
Abstract
A theoretical investigation of crystal field parameters (CFP) and zero-field splitting (ZFS) parameter D of Mn2+ doped guanidine zinc sulphate (GZS) crystals at room temperature (RT) is done with the help of superposition model and the perturbation theory. The ZFS parameter D determined here is in good agreement with the experimental value reported earlier. The conclusion of experimental study that Mn2+ substitutes for Zn2+ in GZS is supported by our theoretical investigation. The values of D without and with local distortion are 11174.3×10-4 cm-1 and 702.4 ×10-4 cm-1, respectively, while the experimental value is 702.0×10-4 cm-1.
Downloads
References
[2] Z.Y.Yang, C. Rudowicz, Y. Y. Yeung, Physica B 348 (2004) 151-159.
[3] Z.Y. Yang, Y. Hao, C. Rudowicz, Y.Y. Yeung, J. Phys.: Condens. Matter 16 (2004) 3481 - 3494.
[4] T. H. Yeom, Y. M. Chang, S. H. Choh, C. Rudowicz, Phys. Stat. Sol. b185 (1994) 409-415.
[5] P. Gnutek, Z. Y. Yang, C. Rudowicz, J. Phys.: Condens. Matter 21 (2009) 455-402.
[6] Y. Y. Yeung, D. J. Newman, Phys. Rev. B 34 (1986) 2258-2265.
[7] D. J. Newman, D. C. Pryce, W. A. Runciman, Am. Mineral, 63 (1978) 1278-1281; A. Edgar, J. Phys. C 9 (1976) 4304; G. Y. Shen, M. G. Zhao, Phys. Rev. B 30 (1984) 3691- 3703.
[8] S. K. Misra in: Handbook of ESR (Vol.2), eds. C. P. Poole Jr., H. A. Farach, Springer, New York, 1999, Chapter IX, p. 291.
[9] H. Anandlakshmi, K. Velavan, I. Sougandi, R. Venkatesan, P. S. Rao, Pramana 62 (2004) 77- 86.
[10] P. S. Rao, Spectrochim. Acta A 49 (1993) 897-901.
[11] S. K. Misra, Physica B 203 (1994) 193-200.
[12] B. R. Mc Garvey, Electron Spin Resonance of Transition Metal Complexes, in: Transition Metal Chemistry, Vol. 3, ed. R. L. Carlin, Marcel Dekker, New York, 1966.
[13] S. Natarajan and J. K. Mohana Rao, Curr. Sci. 45, (1976) 490-491.
[14] A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Clarendon Press, Oxford, 1970.
[15] H. A. Kuska, M.T. Rogers, Radical Ions, E. T. Kaiser, L. Kevan, Eds., Interscience, New York, 1968.
[16] V. S. X. Anthonisamy, M. Velayutham, R. Murugesan, Physica B. 262 (1999) 13-19.
[17] T. H. Yeom, S. H. Choh, M. L. Du, J. Phys.: Condens. Matter 5 (1993) 2017-2024.
[18] M. J. D. Powell, J. R. Gabriel, D. F. Johnston, Phys. Rev. Lett. 59(1960)145-146.
[19] H. Watanabe, Prog. Theor. Phys. 18 (1957) 405-420.
[20] C. N. Morimoto, E. C. Lingafelter, Acta Cryst. B26 (1970)335-341.
[21] M. G. Zhao, M. L. Du, G. Y. Sen, J. Phys. C: Solid State Phys. 18 (1985) 3241-3248.
[22] W. L. Yu, Phys. Rev. B 39 (1989) 622-632.
[23] Z. Y. Yang, J. Phys.: Condens. Matter 12 (2000) 4091-4096.
[24] D. J. Newman, B. Ng, Rep. Prog. Phys. 52 (1989) 699-763.
[25] W. L. Yu, M. G. Zhao, Phys. Rev. B 37, (1988) 9254-9267.
[26] K. D. Singh, S. C. Jain, T. D. Sakore, A. B. Biswas, Acta Cryst. B31 (1975) 990-993.
[27] C. Rudowicz, H. W. F. Sung, Physica B 300 (2001) 1-26.
[28] C. J. Radnell, J. R. Pilbrow, S. Subramanian, M. T. Rogers, J. Chem. Phys. 62 (1975), 4948-4952.
[29] J. A. Weil, J. R. Bolton, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, second ed., Wiley, New York, 2007.
[30] W. L. Yu, M. G. Zhao, J. Phys. C: Solid State Phys., 18(1984) L525-L527.
[31] J. F. Clare, S. D. Devine, J. Phys. C 17(1984) L581-l584.
[32] R. M. Macfarlane, J. Chem. Phys. 47 (1967) 2066-2073; Phys. Rev. B 1 (1970) 989-1004.
[33] M. H. L. Pryce. Phys, Rev. 80 (1950) 1107-1108.
[34] R. R. Sharma, R. Orbach, T. P. Das, Phys. Rev.,149 (1966) 257-269.
[35] W. L. Yu, M. G. Zhao, Phys. Stat. B 140 (1987) 203-212.
[36] Y.Y. Yeung, Superposition model and its applications, in: Optical Properties of 3d-Ions in Crystals, Spectroscopy and Crystal Field Analysis (Chapter 3, pp.95-121), M. G. Brik and N. M. Avram (Eds.), Springer: Heidelberg, New York, Dordrecht, London, 2013.
[37] Q. Wei, Acta Phys. Polon. A. 118 (2010) 670-672.
[38] R. Kripal, H. Govind, S. K. Gupta, M. Arora, Physica B, 392 (2007) 92-98.
[39] T. T. Hoa, N. D. The, S. McVitie, N. H. Nam, L. V. Vu, T. D. Canh, N. N. Long, Opt. Mat. 33(2011)308-314.
[40] K. Gruszka, R. Hrabanski, J. Ozga, Z. Czapla, Nukleonika 58 (2013) 387-390.
Copyright (c) 2021 Boson Journal of Modern Physics
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
TRANSFER OF COPYRIGHT
BJMP is pleased to undertake the publication of your contribution to Boson Journal of Modern Physics.
The copyright to this article is transferred to BJMP(including without limitation, the right to publish the work in whole or in part in any and all forms of media, now or hereafter known) effective if and when the article is accepted for publication thus granting BJMP all rights for the work so that both parties may be protected from the consequences of unauthorized use.