Composite Bosons in Silicon Nanosandwiches

  • Nikolai Bagraev Ioffe Physical-Technical Institute, 194021, St. Petersburg, Russia
  • Vyacheslav Khromov Ioffe Physical-Technical Institute, 194021, St. Petersburg, Russia
  • Leonid Klyachkin Ioffe Physical-Technical Institute, 194021, St. Petersburg, Russia
  • Anna Malyarenko Ioffe Physical-Technical Institute, 194021, St. Petersburg, Russia
  • Vladimir Mashkov Peter the Great St. Petersburg Polytechnic University, 195251, St. Petersburg, Russia
  • Vladimir Romanov Peter the Great St. Petersburg Polytechnic University, 195251, St. Petersburg, Russia
  • Nickolai Rul' Peter the Great St. Petersburg Polytechnic University, 195251, St. Petersburg, Russia
Keywords: (de Haas van Alphen effect), (quantum Hall effect), (silicon nanosandwich), (single magnetic flux quantum), (edge channel), (negative-U dipole boron center)

Abstract

The negative-U impurity stripes confining the edge channels of semiconductor quantum wells are shown to allow the effective cooling inside in the process of the spin-dependent transport, with the reduction of the electron-electron interaction. The aforesaid promotes also the creation of composite bosons and fermions by the capture of single magnetic flux quanta on the edge channels under the conditions of low sheet density of carriers, thus opening new opportunities for the registration of the quantum kinetic phenomena in weak magnetic fields at high temperatures up to the room temperature. As a certain version noted above we present the first findings of the high temperature de Haas-van Alphen, 300K, quantum Hall, 77K, effects as well as quantum conductance staircase in the silicon sandwich structure that represents the ultra-narrow, 2 nm, p-type quantum well (Si-QW) confined by the delta barriers heavily doped with boron on the n-type Si (100) surface.

Downloads

Download data is not yet available.

References

Ezawa, ZF, (2013). Quantum Hall Effects: Recent Theoretical and Experimental Developments. Singapore: World Scientific.

Eisenstein, JP, Stormer, HL, Narayanamurti, V, Cho, AY, Gossard, AC, Tu, CW (1985). Density of States and de Haas-van Alphen Effect in Two-Dimensional Electron Systems. Phys. Rev. Lett., 55, 875-878. doi: 10.1103/PhysRevLett.55.875.

Landwehr, G, Gerschütz, J, Oehling, S, Pfeuffer-Jeschke, A, Latussek, V, Becker, CR, (2000). Quantum transport in n-type and p-type modulation-doped mercury telluride quantum wells. Physica E, 6, 713-717. doi: 10.1016/ S1386-9477(99)00179-4.

Novoselov, KS, Geim, AK, Morozov, SV, Jiang, D, Katsnelson, MI, Grigorieva, IV, Dubonos, SV, Firsov, AA, (2005). Two-dimensional gas of massless Dirac fermions in grapheme. Nature, 438, 197-200. doi:10.1038/nature04233.

Novoselov, KS, Jiang, Z, Zhang, Y, Morozov SV, Stormer, HL, Zeitler, U, Maan, JC, Boebinger, GS, Kim, P, Geim, AK, (2007). Room-Temperature Quantum Hall Effect in Graphene. Science, 315, 1379. doi: 10.1126/science.1137201.

Geim, AK, Novoselov, KS, (2007). The rise of grapheme. Nature Materials, 6, 183-191. doi:10.1038/nmat1849.

Hasan, MZ, Kane, CL, (2010). Colloquium: Topological insulators. Rev. Mod. Phys., 82, 3045-3067. doi: 10.1103/RevModPhys.82.3045.

Klinovaja, J, Stano, P, Yazdani, A, Loss, D, (2013). Topological Superconductivity and Majorana Fermions in RKKY Systems. Phys. Rev. Lett., 111, 186805-5. doi: 10.1103/PhysRev Lett.111.186805.

Zyuzin, AA, Loss, D, (2014). RKKY interaction on surfaces of topological insulators with superconducting proximity effect. Phys. Rev. B, 90, 125443-5.doi: 10.1103/PhysRevB.90.125443.

Bagraev, NT, Bouravleuv, AD, Gehlhoff W, Klyachkin LE, Malyarenko, AM, Rykov, SA, (2001). Self-Assembled Impurity Superlattices and Microcavities in Silicon. Def. Diff. Forum, 194-199, 673-678. doi: 10.4028/www.scientific. net/DDF.194-199.673.

Bagraev, NT, Galkin, NG, Gehlhoff, W, Klyachkin, LE, Malyarenko, AM, (2008). Phase and amplitude response of the '0.7 feature' caused by holes in silicon one-dimensional wires and rings. J. Phys.: Condens. Matter,. 20, 164202-10. doi:10.1088/0953-8984/20/16/164202.

Gehlhoff, W, Bagraev, NT, Klyachkin, LE, (1995). Cyclotron Resonance in Heavily Doped Silicon Quantum Wells. Sol. St. Phenomena, 47-48, 589-594. doi: 10.4028/www.scientific.net/ SSP.47-48.589.

Bagraev, NT, Klyachkin, LE, Kudryavtsev, AA, Malyarenko, AM, Romanov, VV, (2010). Superconductor Properties for Silicon Nanostructures. In AM Luiz (Ed.), Superconductor (pp.69-92). Croatia: SCIYO.

Bagraev, NT, Ivanov, VK, Klyachkin, LE, Shelykh, IA, (2004). Spin depolarization in quantum wires polarized spontaneously in zero magnetic field. Phys. Rev. B, 70, 155315-9. doi: 10.1103/PhysRevB.70.155315.

Bagraev, NT, Brilinskaya, ES, Gets, DS, Klyachkin, LE, Malyarenko, AM, Romanov, VV, (2011). Shubnikov-de-Haas and de-Haas-van-Alphen oscillations in silicon nanostructures. Semiconductors, 45, 1447-1452. doi: 10.1134/S1063782611110030.

Bagraev, NT, Mashkov, VA, Danilovsky, EYu, Gehlhoff, W, Gets, DS, Klyachkin, LE, Kudryavtsev, AA, Kuzmin, RV, Malyarenko, AM, Romanov, VV, (2010). EDESR and ODMR of Impurity Centers in Nanostructures Inserted in Silicon Microcavities. Appl. Magn. Reson., 39, 113-135. doi: 10.1007/s00723-010-0141-0.

Laughlin, RB, (1981). Quantized Hall conductivity in two dimensions. Phys. Rev. B, 23, 5632-5633. doi: 10.1103/PhysRevB.23.5632.

Laughlin, RB, (1983).Quantized motion of three two-dimensional electrons in a strong magnetic field. Phys. Rev. B, 27, 3383-3389. doi: 10.1103/PhysRevB.27.3383.

Halperin, BI, (1983).Theory of the quantized Hall conductance. Helvetica Physica Acta, 56, 75-102. doi: 10.5169/seals-115362.

Dolgopolov, VT, (2014). Integer quantum Hall effect and related phenomena. Phys. Usp., 57, 105-127. doi: 10.3367/UFNe.0184.201402a. 0113.

Devyatov, EV, (2007). Edge states in the regimes of integer and fractional quantum Hall effects. Phys. Usp., 50, 197-218. doi: 10.1070/PU2007 v050n02ABEH006244.

von Klitzing, K, Dorda, G, Pepper, M, (1980). New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance. Phys. Rev. Lett., 45, 494-497. doi: 10.1103/PhysRevLett.45.494.

Willett, R, Eisenstein, JP, Störmer, HL, Tsui, DC, Gossard, AC, English, JH, (1987). Observation of an even-denominator quantum number in the fractional quantum Hall effect. Phys. Rev. Lett., 59, 1776-1779. doi: 10.1103/PhysRevLett.59. 1776.

Zazoui, M, Feng, SL, Bourgoin, JC, (1991). Nature of the DX center in Ga1−xAlxAs. Phys. Rev. B, 44, 10898-10900. doi: 10.1103/PhysRev B.44.10898.

Peale, RE, Mochizuki, Y, Sun, H, Watkins, GD, (1992). Magnetic circular dichroism of the DX center in Al0.35Ga0.65As:Te. Phys. Rev. B, 45, 5933-5943. doi: 10.1103/PhysRevB.45.5933.

Alt, HCh, (1990). Experimental evidence for a negative-U center in gallium arsenide related to oxygen. Phys. Rev. Lett., 65, 3421-3424. doi: 10.1103/PhysRevLett.65.3421.

Bagraev, NT, (1991). The EL2 center in GaAs: symmetry and metastability. J. Phys. I France, 1, 1511-1527. doi: 10.1051/jp1:1991223.

Thornton, TJ, Pepper, M, Ahmed, H, Andrews, D, Davies, GJ, (1986). One-Dimensional Conduction in the 2D Electron Gas of a GaAs-AlGaAs Heterojunction. Phys. Rev. Lett., 56, 1198-1201. doi: 10.1103/PhysRevLett.56.1198.

Wharam, DA, Thornton, TJ, Newbury, R, Pepper, M, Ahmed, H, Frost, JEF, Hasko, DG, Peacock, DC, Ritchie, DA, Jones, GAC, (1988). One-dimensional transport and the quantisation of the ballistic resistance. Journal of Physics C: Solid State Physics, 21, L209-L214.

van Wees, BJ, van Houten, H, Beenakker, CWJ, Williamson, JG, Kouwenhoven, LP, van der Marel, D, Foxon, CT, (1988). Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett., 60, 848-850. doi:10.1103/PhysRevLett.60.848.

Yacoby, A, Stormer, HL, Wingreen, NedS, Pfeiffer, LN, Baldwin, KW, West, KW, (1996). Nonuniversal Conductance Quantization in Quantum Wires. Phys. Rev. Lett, 77, 4612-4615. doi: 10.1103/PhysRevLett.77.4612.

Thomas, KJ, Nicholls, JT, Simmons, MY, Pepper, M, Mace, DR, Ritchie, DA, (1996). Possible Spin Polarization in a One-Dimensional Electron Gas. Phys. Rev. Lett., 77, 135-138. doi: 10.1103/PhysRevLett.77.135.

Lieb, E, Mattis, D, (1962). Theory of Ferromagnetism and the Ordering of Electronic Energy Levels. Phys. Rev., 125, 164-172. doi: 10.1103/PhysRev.125.164.

Crook, R, Prance, J, Thomas KJ, Chorley, SJ, Farrer, I, Ritchie, DA, Pepper, M, Smith, CG, (2006). Conductance Quantization at a Half-Integer Plateau in a Symmetric GaAs Quantum Wire. Science, 312, 1359-1362. doi: 10.1126/science.1126445.

Hasan, MZ, Kane, CL, (2010). Colloquium: Topological insulators. Rev. of Mod. Phys., 82, 3045-3067. doi: 10.1103/RevModPhys.82.3045.

Qi, Xiao-Liang, Zhang, Shou-Cheng, (2011). Topological insulators and superconductors. Rev. of Mod. Phys., 83, 1057-1110. doi: 10.1103/RevModPhys.83.1057.

Buttiker, M, (1986). Four-Terminal Phase-Coherent Conductance. Phys. Rev. Lett., 57, 1761-1764. doi: 10.1103/PhysRevLett.57.1761.

Bagraev, NT, Danilovskii, EYu, Klyachkin, LE, Malyarenko, AM, Mashkov, VA, (2012). Spin interference of holes in silicon nanosandwiches. Semiconductors, 46, 75-86. doi: 10.1134/ S1063782612010034.

Rosenau da Costa, M, Shelykh, IA, Bagraev, NT, (2007). Fractional quantization of ballistic conductance in one-dimensional hole systems. Phys. Rev. B, 76, R201302-4. doi: 10.1103/ PhysRevB.76.201302.

Goldman, VJ, (2007). Superperiods and quantum statistics of Laughlin quasiparticles. Phys. Rev. B, 75, 045334-11. doi: 10.1103/PhysRevB.75. 045334.

Miller, JB, Zumbuehl, DM, Marcus, CM, Lyanda-Geller, YB, Goldhaber-Gordon, D, Campman, K, Gossard, AC, (2003). Gate-Controlled Spin-Orbit Quantum Interference Effects in Lateral Transport. Phys. Rev. Lett., 90, 076807-4. doi: 10.1103/PhysRevLett.90.076807.

Studenikin, SA, Goleridze, PT, Ahmed, N, Poole, PJ, Sachrajda, A, (2003). Experimental study of weak antilocalization effects in a high-mobility InxGa1−xAs/InP quantum well. Phys. Rev. B, 68, 035317-8. doi: 10.1103/PhysRevB.68.035317.

Bagraev, NT, Gehlhoff, W, Klyachkin, LE, Malyarenko, AM, Romanov, VV, Rykov, SA, (2006). Superconductivity in silicon nanostructures. Physica C, 437-438, 21-24. doi: 10.1016/j.physc.2005.12.011.

Bychkov, YuA, Rashba, EI, (1984). Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J.Phys. C: Solid State Physics, 17, 6039-6045.

Winkler, R, (2000). Rashba spin splitting in two-dimensional electron and hole systems. Phys. Rev. B, 62, 4245-4248. doi: 10.1103/PhysRevB. 62.4245.

Winkler, R, Noh, H, Tutuc, E, Shayegan, M, (2002). Anomalous Rashba spin splitting in two-dimensional hole systems. Phys. Rev. B, 65, 155303-4. doi: 10.1103/PhysRevB.65.155303.

Datta, S, Das, B, (1990). Electronic analog of the electro‐optic modulator. Appl. Phys. Lett., 56, 665-667. doi: 10.1063/1.102730.

Aronov, AG, Lyanda-Geller, YB, (1993). Spin-orbit Berry phase in conducting rings. Phys. Rev. Lett., 70, 343-346. doi: 10.1103/PhysRevLett. 70.343.

Nitta, J, Meijer, FE, Takayanagi, H, (1999). Spin-interference device. Appl. Phys. Lett., 75, 695-697. doi: 10.1063/1.124485.

König, M, Tschetschetkin, A, Hankiewicz, EM, Sinova, J, Hock, V, Daumer, V, Schäfer, M, Becker, CR, Buhmann, H, Molenkamp, LW, (2006). Direct Observation of the Aharonov-Casher Phase. Phys. Rev. Lett., 96, 076804-4. doi: 10.1103/PhysRevLett.96.076804.

Bergsten, T, Kobayashi, T, Sekine, Y, Nitta, J, (2006). Experimental Demonstration of the Time Reversal Aharonov-Casher Effect. Phys. Rev. Lett., 97, 196803-4. doi: 10.1103/PhysRevLett. 97.196803.

Bagraev, NT, Galkin, NG, Gehlhoff, W, Klyachkin, LE, Malyarenko, AM, Shelykh, IA, (2006). Spin interference in silicon one-dimensional rings J. Phys.:Condens. Matter., 18, L567-L573. doi:10.1088/0953-8984/18/45/L01.

Shelykh, IA, Galkin, NG, Bagraev, NT, (2005). Quantum splitter controlled by Rasha spin-orbit coupling. Phys. Rev. B, 72, 235316-7. doi: 10.1103/PhysRevB.72.235316.

Zitouni, O, Boujdaria, K, Bouchriha, H, (2005). Band parameters for GaAs and Si in the 24-k ⋅ p model. Semicond. Sci. Technol., 20, 908-911. doi:10.1088/0268-1242/20/9/003.

Published
2018-05-24
How to Cite
Bagraev, N., Khromov, V., Klyachkin, L., Malyarenko, A., Mashkov, V., Romanov, V., & Rul’, N. (2018). Composite Bosons in Silicon Nanosandwiches. Boson Journal of Modern Physics, 4(1), 323-337. Retrieved from http://scitecresearch.com/journals/index.php/bjmp/article/view/1522
Section
Articles