Maxwell’s equations as a special case of deformation of a solid lattice in Euler’s coordinates

  • G. Gremaud Institute of Condensed Matter Physics Swiss Federal Institute of Technology of Lausanne CH-1015 Lausanne, Switzerland
Keywords: Maxwell’s equations, deformation of a solid lattice, Euler’s coordinates

Abstract

It is shown that the set of equations known as “Maxwell’s equations” perfectly describe two very different systems: (1) the usual electromagnetic phenomena in vacuum or in the matter and (2) the deformation of isotropic solid lattices, containing topological defects as dislocations and disclinations, in the case of constant and homogenous expansion. The analogy between these two physical systems is complete, as it is not restricted to one of the two Maxwell’s equation couples in the vacuum, but generalized to the two equation couples as well as to the diverse phenomena of dielectric polarization and magnetization of matter, just as to the electrical charges and the electrical currents. The eulerian approach of the solid lattice developed here includes Maxwell’s equations as a special case, since it stems from a tensor theory, which is reduced to a vector one by contraction on the tensor indices. Considering the tensor aspect of the eulerian solid lattice deformation theory, the analogy can be extended to other physical phenomena than electromagnetism, a point which is shortly discussed at the end of the paper.

Downloads

Download data is not yet available.

References

J.F. Nye, Acta Metall.,vol. 1, p.153, 1953

K. Kondo, RAAG Memoirs of the unifying study of the basic problems in physics and engineering science by means of geometry, volume 1. Gakujutsu Bunken Fukyu- Kay, Tokyo, 1952

B. A. Bilby , R. Bullough and E. Smith, «Continuous distributions of dislocations: a new application of the methods of non-riemannian geometry», Proc. Roy. Soc. London, Ser. A 231, p. 263–273, 1955

E. Cartan, C.R. Akad. Sci., 174, p. 593, 1922 & C.R. Akad. Sci., 174, p.734, 1922

E. Kröner, «Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen», Arch. Rat. Mech. Anal., 4, p. 273-313, 1960

E. Kröner, «Continuum theory of defects», in «physics of defects», ed. by R. Balian et al., Les Houches, Session 35, p. 215–315. North Holland, Amsterdam, 1980.

M. Zorawski, «Théorie mathématique des dislocations», Dunod, Paris, 1967.

G. Gremaud, “Théorie eulérienne des milieux déformables, charges de dislocation et de désinclinaison dans les solides", Presses polytechniques et universitaires romandes, Lausanne, Suisse, 2013, 750

pages, ISBN 978-2-88074-964-4 G. Gremaud, “Eulerian theory of newtonian deformable lattices – dislocation and disclination charges in solids” , CreateSpace, Charleston (USA), 2016, 312 pages, ISBN 978-2-8399-1943-2

V. Volterra, «L’équilibre des corps élastiques», Ann. Ec. Norm. (3), XXIV, Paris, 1907

J.-P. Hirth, «A Brief History of Dislocation Theory», Metallurgical Transactions A, vol. 16A, p. 2085, 1985

E. Orowan, Z. Phys., vol. 89, p. 605,614 et 634, 1934

M. Polanyi, Z. Phys., vol.89, p. 660, 1934

G. I. Taylor, Proc. Roy. Soc. London, vol. A145, p. 362, 1934

J. M. Burgers, Proc. Kon. Ned. Akad. Weten schap., vol.42, p. 293, 378, 1939

P. B. Hirsch, R. W. Horne, M. J. Whelan, Phil. Mag., vol. 1, p. 667, 1956

W. Bollmann, Phys. Rev., vol. 103, p. 1588, 1956.

O. Lehmann, «Flussige Kristalle», Engelman, Leibzig, 1904

G. Friedel, Ann. Physique, vol. 18, p. 273, 1922.

V. Volterra, «L’équilibre des corps élastiques», Ann. Ec. Norm. (3), XXIV, Paris, 1907.

S. E. Whittaker, «A History of the Theory of Aether and Electricity», Dover reprint, vol. 1, p. 142, 1951.

A. Unzicker, «What can Physics learn from Continuum Mechanics?», arXiv:gr-qc/0011064, 2000

G. Gremaud, “Universe and Matter conjectured as a 3-dimensional Lattice with Topological Singularities”, Amazon, Charleston (USA) 2016, 650 pages, ISBN 978-2-8399-1934-0 G. Gremaud, “Univers et Matière conjecturés comme un Réseau Tridimensionnel avec des Singularités Topologiques”, Amazon, Charleston (USA) 2016, 664 pages, ISBN 978-2-8399-1940-1

G. Gremaud, “Universe and Matter conjectured as a 3-dimensional Lattice with Topological Singularities”, Journal of Modern Physics, 7, 1389-1399, DOI 10.4236/jmp.2016.71212

Published
2017-12-16
How to Cite
Gremaud, G. (2017). Maxwell’s equations as a special case of deformation of a solid lattice in Euler’s coordinates. Boson Journal of Modern Physics, 4(1), 279-298. Retrieved from http://scitecresearch.com/journals/index.php/bjmp/article/view/1031
Section
Articles