On ϕ - Classes of Submodules

  • Arwa Eid Ashour Department of Mathematics, The Islamic University of Gaza, Palestine
  • Mohammed Mahmoud AL-Ashker Department of Mathematics, The Islamic University of Gaza, Palestine
  • Al-Hussain Kamal Abu Oda Department of Mathematics, The Islamic University of Gaza, Palestine
Keywords: ϕ-prime submodules, ϕ-primary submodules, ϕ-primal submodules, ϕ-prime to submodule, ϕ-2-absorbing submodules

Abstract

Let R be a commutative ring with identity and let M be a unitary R-module. Let S(M) be the set of all submodules of M and :S(M)! S(M) S f;g be a function. A proper submodule N of M is said to be a -prime (resp. a -primary) submodule if am 2 N-(N) for a 2 R, m 2 M implies that either m 2 N or a 2 (N : M) (resp. a 2 p (N : M)). These concepts were introduced by N. Zamani and M. Bataineh, in this paper, we study the concept of -primary submodule in details. Also, we introduce the concepts of -primal submodules and -2-absorbing submodules.

Downloads

Download data is not yet available.

References

Anderson, D.D., and Bataineh, M., Generalizatins of prime ideals, Comm. Algebra, Vol. 36, pp 686-696, (2008).

Ashour, A.E., On Weakly primary submodules, Journal of Al Azhar University-Gaza (Natural Sciences), Vol.13, pp 31-40, (2011).

Atani, S.E and Farzalipour, F., On Weakly primary ideals, Georgian Mathematical Journal Volume 12, Number 3, pp 423-429, (2005).

Atani, S.E and Farzalipour, F., On Weakly prime submodules, Tamkang Journal Of Mathematics, Volume 38, Number 3, pp 247-252, (2007)

Atani, S.E. and Darani, A.Y.,Weakly Primal Submodules, Tamkang Journal Of Mathematics, Volume 40, Number 3, pp 239-245, (2009).

Athab, E.A., Prime and Semiprime Submodules, M.Sc. Thesis, College of Science, University of Baghdad, (1996).

Bataineh, M. and Kuhail, S., Generalizations of Primary Ideals and Submodules, Jordan University of Science and Technology,Jordan, Int. J. Contemp. Math. Sciences, Vol. 6, no. 17, pp811 - 824, (2011).

Darani, A.Y., Generalizations of primal ideals in commutative rings, Matematiki Vesnik, Iran, vol. 64(1), pp25-31, (2012).

Darani, A. and Soheilnia, F., 2-Absorbing and Weakly 2-Absorbing Submodule, Thai Journal of Mathematics Volume 9, Number 3, pp 577-584, (2011).

Darani, A.Y., When an Irreducible Submodule is Primary, International Journal of Algebra, Vol. 2, no. 20, pp 995-998, (2008).

Darani, A.Y, Almost Primal Ideals in Commutative Rings, Chiang Mai J. Sci., 38(2), pp 161-165, (2011).

Dauns, J., Primal modules, Communications in Algebra, 25:8, pp 2409-2435, (1997).

Dubey, M. and Aggarwal, P., On 2-Absorbing Submodules over Commutative Rings, ISSN 1995-0802, Lobachevskii Journal of Mathematics, Vol. 36, No. 1, pp. 58-64, (2015).

Khaksari, A.,  - prime submodule, International Journal of Algebra, Vol. 5, no. 29, pp 1443 - 1449, (2011).

Khashan, H.A., On almost prime submodules, Science Direct, Acta Mathematica Scientia, Vol.32, No.2, pp 645-651, (2012).

Li-min,W., and Shu-xiang, Y., On almost primary submodules, Journal of Lanzhou University (Natural Sciences), Vol. 49 No. 3, (2013).

Lu, C.Pi., Prime Submodules of modules, Comment. Math. Univ. St. Paul, Vol.33 No. 1, pp 61-69, (1984).

Northcott, D.G., Lessons on Rings, Modules, and Multiplicties, Cambridge University Press, (1968).

Sharp, R., Steps in commutative algebra, Cambridge University Press, Cambridge- New York- Sydney, (2000).

Zamani, N.,  - prime submodule, Glasgow Mathematical Journal, Iran, volume 52, issue 02, pp 253-259, (2010).

Published
2017-01-16
How to Cite
Ashour, A., AL-Ashker, M. M., & Abu Oda, A.-H. (2017). On ϕ - Classes of Submodules. Journal of Progressive Research in Mathematics, 11(1), 1510-1522. Retrieved from https://scitecresearch.com/journals/index.php/jprm/article/view/934
Section
Articles