Some theorem on common fixed points and points of coincidence for mappings in metric space

  • Andrzej Mach Education Faculty of Engineering and Economics Department of Informatics, The State Higher School of Vocat. Narutowicza 906-400 Ciechanow, Poland
Keywords: Fixed point, point of coincidence, weakly compatible mappings, contraction, Banach fixed point theorem, Kannan type condition.

Abstract

The paper includes theorem giving the sufficient condition for existence of common point of coincidence and common fixed point for 2n + 1 mappings in metric space.

Downloads

Download data is not yet available.

References

M. Arshad, A. Azam, P. Vetro, Some common fixed point results in

cone metric spaces, Fixed Point Theory Appl., 2009 (2009), Article ID

,11 pages.

A. Azam, I. Beg, Kannan type mapping in its TVS-valued cone metric

space and their applications to Uryshon integral equations, Sarajevo Journal of Mathematics, Vol 9 (22) (2013), 243-255.

S. Banach, Sur les opération dans l'ensembles abstraits et leur application aux équations intégrales, Fundam. Math., 3 (1922), 133-181.

J. Dugundji and A. Granas, Fixed Point Theory, Monograe Matematyczne, Tom 61 vol. I, PWN- Polish Scientic Publishers (1982).

J. Jachymski, Common fixed point theorems for some families of mappings, Indian J. Pure Appl. Math. 25 (1994), 925-937.

K. Jha, R. P. Pant, S. L. Singh, Common xed points for comapatible

mappings in metric spaces, Radovi Matemati£ki, vol. 12 (2003), 107-114.

R. Kannan, Some results on fixed points II, Am. Math. Mon. 76(4) (1969), 405-408.

R. P. Pant, P. C. Joshi, V. Gupta, A Meir-Keeler type xed point theorem, Indian J. Pure Appl. Math. 32(6) (2001), 779-787.

Published
2016-03-24
How to Cite
Mach, A. (2016). Some theorem on common fixed points and points of coincidence for mappings in metric space. Journal of Progressive Research in Mathematics, 7(1), 892-898. Retrieved from https://scitecresearch.com/journals/index.php/jprm/article/view/632
Section
Articles