Some theorem on common fixed points and points of coincidence for mappings in metric space
Abstract
The paper includes theorem giving the sufficient condition for existence of common point of coincidence and common fixed point for 2n + 1 mappings in metric space.
Downloads
References
M. Arshad, A. Azam, P. Vetro, Some common fixed point results in
cone metric spaces, Fixed Point Theory Appl., 2009 (2009), Article ID
,11 pages.
A. Azam, I. Beg, Kannan type mapping in its TVS-valued cone metric
space and their applications to Uryshon integral equations, Sarajevo Journal of Mathematics, Vol 9 (22) (2013), 243-255.
S. Banach, Sur les opération dans l'ensembles abstraits et leur application aux équations intégrales, Fundam. Math., 3 (1922), 133-181.
J. Dugundji and A. Granas, Fixed Point Theory, Monograe Matematyczne, Tom 61 vol. I, PWN- Polish Scientic Publishers (1982).
J. Jachymski, Common fixed point theorems for some families of mappings, Indian J. Pure Appl. Math. 25 (1994), 925-937.
K. Jha, R. P. Pant, S. L. Singh, Common xed points for comapatible
mappings in metric spaces, Radovi Matemati£ki, vol. 12 (2003), 107-114.
R. Kannan, Some results on fixed points II, Am. Math. Mon. 76(4) (1969), 405-408.
R. P. Pant, P. C. Joshi, V. Gupta, A Meir-Keeler type xed point theorem, Indian J. Pure Appl. Math. 32(6) (2001), 779-787.
Copyright (c) 2016 Journal of Progressive Research in Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.