On Four Special Cases of Generalized Tribonacci Sequence: Tribonacci-Perrin, modified Tribonacci, modified Tribonacci-Lucas and adjusted Tribonacci-Lucas Sequences
Abstract
In this paper, we investigate four new special cases, namely, Tribonacci-Perrin, modified Tribonacci, modified Tribonacci-Lucas, adjusted Tribonacci-Lucas sequences, of the generalized Tribonacci sequences. We present Binet's formulas, generating functions, Simson formulas, and the summation formulas for these sequences. Moreover, we give some identities and matrices related with these sequences.
Downloads
References
[2] Catalani, M., Identities for Tribonacci-related sequences, arXiv:math/0209179, 2012.
[3] Choi, E., Modular Tribonacci Numbers by Matrix Method, Journal of the Korean Society of Mathematical Education Series B: Pure and Applied. Mathematics. 20(3), 207221, 2013.
[4] Elia, M., Derived Sequences, The Tribonacci Recurrence and Cubic Forms, Fibonacci Quarterly, 39 (2), 107-115, 2001.
[5] Er, M. C., Sums of Fibonacci Numbers by Matrix Methods, Fibonacci Quarterly, 22(3), 204-207, 1984.
[6] Feinberg, M., FibonacciTribonacci, The Fibonacci Quarterly, 1 (3), 7174, 1963.
[7] Howard F.T., Saidak, F., Zhous Theory of Constructing Identities, Congress Numer. 200 (2010), 225-237.
[8] Kalman, D., Generalized Fibonacci Numbers By Matrix Methods, Fibonacci Quarterly, 20(1), 73-76, 1982.
[9] Kiliç, E., Stanica, P., A Matrix Approach for General Higher Order Linear Recurrences, Bulletin of the Malaysian Mathematical Sciences Society, (2) 34(1), 5167, 2011.
[10] Lin, P. Y., De Moivre-Type Identities For The Tribonacci Numbers, Fibonacci Quarterly, 26, 131-134, 1988.
[11] Pethe, S., Some Identities for Tribonacci sequences, Fibonacci Quarterly, 26(2), 144151, 1988.
[12] Scott, A., Delaney, T., Hoggatt Jr., V., The Tribonacci sequence, Fibonacci Quarterly, 15(3), 193200, 1977.
[13] Shannon, A., Tribonacci numbers and Pascals pyramid, Fibonacci Quarterly, 15(3), pp. 268 and 275, 1977.
[14] Sloane, N.J.A., The on-line encyclopedia of integer sequences, http://oeis.org/
[15] Soykan, Y. Tribonacci and Tribonacci-Lucas Sedenions. Mathematics 7(1), 74, 2019.
[16] Soykan, Y., Summing Formulas For Generalized Tribonacci Numbers, Universal Journal of Mathematics and Applications, 3(1), 1-11, 2020. DOI: https://doi.org/10.32323/ujma.637876
[17] Soykan, Y., Simson Identity of Generalized m-step Fibonacci Numbers, International Journal of Advances in Applied Mathematics and Mechanics, 7(2), 45-56, 2019.
[18] Soykan Y., Generalized Tribonacci Numbers: Summing Formulas, Int. J. Adv. Appl. Math. and Mech. 7(3), 57-76, 2020, (ISSN: 2347-2529).
[19] Soykan, Y., A Closed Formula for the Sums of Squares of Generalized Tribonacci numbers, Journal of Progressive Research in Mathematics, 16(2), 2932-2941, 2020.
[20] Soykan, Y., On the Sums of Squares of Generalized Tribonacci Numbers: Closed Formulas of Pn
k=0 xkW2 k , Archives of Current Research International, 20(4), 22-47, 2020. DOI: 10.9734/ACRI/2020/v20i430187
[21] Spickerman, W., Binets formula for the Tribonacci sequence, Fibonacci Quarterly, 20, 118120, 1982.
[22] Yalavigi, C. C., Properties of Tribonacci numbers, Fibonacci Quarterly, 10(3), 231246, 1972.
[23] Yilmaz, N., Taskara, N., Tribonacci and Tribonacci-Lucas Numbers via the Determinants of Special Matrices, Applied Mathematical Sciences, 8(39), 1947-1955, 2014.
Copyright (c) 2020 Journal of Progressive Research in Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.