Factorization approach to generalized Dirac oscillators
Abstract
We study generalized Dirac oscillators with complex interactions in (1+1) dimensions. It is shown that for the choice of interactions considered here, the Dirac Hamiltonians are pseudo Hermitian with respect to certain metric operators. Exact solutions of the generalized Dirac Oscillator for some choices of the interactions have also been obtained. It is also shown that generalized Dirac oscillators can be identified with Anti Jaynes Cummings type model and by spin flip it can also be identified with Jaynes Cummings type model.
Downloads
References
D. Ito, K. Mori and E. Carriere, Nuovo Cimento A51, 1119 (1967).
P. A. Cook, Lett. Nuovo Cimento 1, 419 (1971).
M. Moshinsky and A. Szczepaniak, J. Phys. A22, L817 (1989).
M. Moreno and A. Zentella, J. Phys. A22, L821 (1989) J. Beckers and N. Debergh, Phys. Rev. D42, 1255 (1990) C. Quesne and M. Moshinsky, J. Phys. A23, 2263 (1990) J. Bentez, R. P. Martnez y Romero, H. N. Nunez-Yepez and A. L. Salas-Brito, Phys. Rev. Lett. 64,
(1990); Phys. Rev. Lett. 65, 2085 (1990) R. P. Martnez y Romero, Matas Moreno and A. Zentella, Phys. Rev. D43, 2036 (1991) O. L. de Lange, J. Phys. A24, 667 (1991) O. L. de Lange and R. E. Raab, J. Math. Phys. 32, 1296 (1991) O. Castanos, A Frank, R. Lopez and L. F. Urrutia, Phys. Rev. D43, 544 (1991) V. Villalba, Phys. Rev. A49,
(1994) R. P. Martinez-y-Romero et al, Eur. J. Phys.16, 135 (1995).
C.L. Ho and P. Roy, Ann. Phys. 312, 161 (2004) Y. Brihaye and A. Nininahazwe, Mod. Phys. Lett. A20, 1875 (2005).
See for example, J. Phys. A45, (2012) and references therein.
A. Sinha and P. Roy, Mod. Phys. Lett. A20, 2377 (2005) V.G.C.S. dos Santos et al, Phys. Lett. A373, 3401 (2009) F. Cannata and A. Ventura, J. Phys. A43, 075305 (2010), Phys. Lett. A 372 (2007), 941. C.M. Bender and P.D. Mannheim, Phys. Rev. D84, 105038 (2011).
C.M. Bender and S. Boettcher, Phys. Rev. Lett 80, 5243 (1998).
A. Mostafazadeh, J. Math. Phys. 43, 2814 (2002) and references therein.
K.G. Markis et al, Phys. Rev. Lett. 100, 103904 (2008) M.V. Berry, J. Phys. A41, 244007
(2008) S. Longhi, Phys. Rev. Lett. 103, 123601 (2009).
A. Guo et al, Phys. Rev. Lett. 103, 093902 C.E. Ruter et al, Nature Physics 6, 192 (2010) T. Kottos, Nature Physics 6, 166 (2010).
S. Longhi, Phys. Rev. Lett. 105, 013903 (2010).
S. Longhi, Optics Lett. 35, 1302 (2010).
R. Giachetti and V. Grecchi, J. Phys. A44, (2010) 095308.
B.P. Mandal and S. Gupta, Mod. Phys. Lett. A25, 1723 (2010).
P. Rozmej and R. Arvieu, J.Phys. A32, 5367 (1999).
A. Bermudez, M.A. Martin Delgado and E. Solano, Phys. Rev. A76, 041801 (2007).
E. Sadurni et al, J. Phys. A43, 285204 (2010).
R. Szmytkowski and M. Gruchowski, J. Phys. A34, 4991 (2001).
Z. Ahmed, Phys. Lett. A290, 19 (2001).
J. Sadeghi, Eur. Phys. J. B, 50, 453-457, (2006).
H. Fakhri, and J. Sadeghi, Mod. Phys. Lett. A, 19, 615, (2004).
H. Fakhri and J. Sadeghi, IJTP. 43, No 2 (2004).
J. Sadeghi, ACTA PHYSICA POLONICA A 112, No. 1 (2007) 23. [44] L. J.
J.Sadeghi, IJTP. DOI: 10. 1007/s10773-006-9105-4 (2006).
J. Sadeghi and M.Rostami, IJTP. DOI: 10. 1007/s10773-009-0012-3 (2009). J. Sadeghi and B. Pourhassan, EJTP 5, No. 17 (2008) 197-206
J.Sadeghi, IJTP. DOI: 10. 1007/s10773-006-9105-4 (2006). J. Sadeghi, and B. Pourhassan, EJTP 5, No. 17 (2008) 197-206
J.Sadeghi, J.Math.Phys. 48, 113508 (2007).
Copyright (c) 2015 Journal of Progressive Research in Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.