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Abstract

Let R be a commutative ring with identity and let M be a unitary R-module. Let
S(M) be the set of all submodules of M and ¢ :S(M)— S(M) |J {0} be a function. A
proper submodule N of M is said to be a ¢-prime (resp. a ¢-primary) submodule if
am € N-¢(N) for a € R, m € M implies that either m € N or a € (N : M) (resp. a €
(N : M)). These concepts were introduced by N. Zamani and M. Bataineh, in this
paper, we study the concept of ¢-primary submodule in details. Also, we introduce the

concepts of ¢-primal submodules and ¢-2-absorbing submodules.

Keywords: ¢-prime submodules, ¢-primary submodules, ¢-primal submodules, ¢-prime to
submodule, ¢-2-absorbing submodules.

1 Introduction

Let R be a commutative ring with identity and let M be a unitary R - module. Let S(M) be
the set of all submodules of M and ¢ :S(M)— S(M)|J {0} be a function. A proper submodule
N of M is said to be a ¢-prime submodule if am € N - ¢(N) for a € R, m € M implies that
either m € N or a € (N : M). This definition was introduced by Zamani and Khaksari as
a generalization of prime submodules that covers the definitions of prime, weakly prime,
almost prime and m-almost prime submodules, see [14] and [20]. In our work, we study the
concept of ¢-primary submodule that was introduced in [15] in more details. We clarify that
this definition is a generalized of primary submodules that covers the definition of primary,
weakly primary, almost primary and m-almost primary submodules.

Let ¢ : J(R)— J(R) J {0} be a function with J(R) the set of all ideals of R. Let I be
an ideal of R, an element a € R is called ¢-prime to I if ra € I -¢(I) (with r € R) implies
that r € I. We denote by S4(I) the set of all elements of R that are not ¢-prime to I. Tis
called a ¢-primal ideal of R if the set P = S, (I) |J ¢(I) forms an ideal of R. The concept
of ¢-primal ideal over commutative ring was introduced by Darani (see[8]). In our work,
we generalize the concept of ¢-primal ideal to ¢-primal submodule. We also, introduce the
concept of ¢-2-absorbing submodules which is a generalization to 2-absorbing submodules.

2 Basic Concepts

In this section, we recall some basic definitions and study some important results that we
need throughout this paper.
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Definition 2.1. [17] Let M be an R-module. A proper submodule N of M is said to be a
prime submodule if whenever rm € N for r € R and m € M we get either m € N or tM C

N (equivalent r € (N : M)).

Definition 2.2. [4] Let M be an R-module and N be a proper submodule of M. N is called
a weakly prime submodule of M if, whenever r € R and m € M such that 0 # rm € N, then
eitherm € Norr e (N: M).

Definition 2.3, [15] Let M be an R-module. A proper submodule N of M is called an
almost prime submodule of M if, whenever r € R and m € M such that rm € N - (N : M)N,
then either m € Norr € (N : M).

Definition 2.4. [18] Let A be an R-module. A proper submodule N of M is said to be a
primary submodule if rm € N for r € R and m € M implies that either m € N or v" M C N
for some positive integer 1.

Definition 2.5. [3] A proper submodule N of a module M over a commutative ring R is
said to be a weakly primary submodule if whenever 0 # rm € N, for some r € R, m € M,
then m € N or "M C N for some n € N.

Definition 2.6. [16] Let M be an R-module and N a proper submodule of M, N is called an
almost primary submodule of M if, whenever r € R, m € M such that rm € N — (N : M )N,
then either m € N or re /(N : M).

Definition 2.7. [12] Let M be an R-module and N a submodule of M. The element a € R
is (left) prime to N it am € N (m € M) implies m € N. The subset A of R is uniformly not
prime to N, if there exists an element u € M — N with Au C N.

Definition 2.8. [12] Let M be an R-module and N a submodule of M. The adjoint of N
is the set of all elements of R that are not prime to N and denoted by adj(/N). On other
words, adj(N) = {r € R:1m € N for some m € M — N}.

Definition 2.9. [12] Let M be an R-module. A proper submodule N of M is said to be
primal it adj(N) forms an ideal of R. In this case the adjoint of N will also be called the
adjoint ideal of N.

Definition 2.10. [5] Let N be a submodule of an R-module M. An element r € R is called
weakly prime (simply wp) to N 1f 0 % rm € N (m € M) implies that m € N. Otherwise r
is not weakly prime (simply nwp) to N. Denote by W(N) the set of elements of R that are
nwp to N.

Definition 2.11. [5] Let R be a commutative ring and let N be a proper submodule of an
R-module M. N is called weakly primal if the set P = W(N) |J {0} forms an ideal of R. P is
called the (weakly) adjoint ideal of N and we also say that N is a P-weakly primal submodule
of M.

The concept of almost primal ideals in a commutative ring was itroduced by A.Y. Darani
in [11]. Let R be a ring and let I be a proper ideal of R. An element a € R is called almost
prime to I if ra € I-I? (with r € R) implies that r € I. We denote by A(I) the set of all
elements of R that are not almost prime to I. A proper ideal I is called almost primal if the
set P = A(T) |J I? forms an ideal of R. This ideal P is an almost prime ideal of R, called the
almost prime adjoint ideal of 1. In this case we also say that I is a P-almost primal ideal.
Now we give some definitions and result in almost primal submodules.

Definition 2.12. Let M be an R-module and N a submodule of M. The element a € R is
(left) almost prime to N if am € N -(N : M)N (m € M) implies m € N. Denote by A(N) the
set of elements of R that are not almost prime to N.

Definition 2.13. Let R be a commutative ring and let N be a proper submodule of an
R-module M. N is called almost primal if the set P = A(N) [J (N : M)N forms an ideal of

R. P is called the (almost) adjoint ideal of N and we also say that N is a P-almost primal
submodule of M.
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Theorem 2.14. Let P be an ideal of a commutative ring R. Let N be a proper submodule

of R-module M. The following are equivalent:

(1) N is P-almost primal.

(2) For every x& P - (N : M)N, (N:xz) =N|J ((N:M)N:z)
and forx € P - (N : M)N, (N:z) 2 NU((N: M)N : ).

Proof. (1) = (2) Assume that N is P-almost primal then P-(N : M)N = A(N). Let x ¢ P
- (N : M)N then x is almost prime to N. Clearly N U ((N : M)N : x) C (N : x). For every
me (N:x),ifmxe (N:MN then m € ((N: M)N : x) and if mx ¢ (N : M)N then x is
almost prime to N, gives m € N. Hence m € N [J ((N : M)N : x), that is (N : x)C N U ((N
: M)N : x). Therefor (N : x) =N U ((N: M)N : x). Now assume that x € P — (N : M )N
then x is not almost prime to N so 4 m € M-N such that xm € N- (N: M)N. Som € (N :
x), but m & ((N: M)N : x) nor m € N. Hence, (N:x) # N|J ((N: M)N : x). However, it
is clear that N |J (N : M)N : x) G (N : x).

(2) = (1) We want to prove that P-(IN : M)N consists exactly of all elements of R that are
not almost prime to N. Hence N is P-almost primal.

Let v € P — (N : M)N, then (N:x) =N U ((N: M)N : x). We want to prove that x &
A(N). Let xim € N - (N : M)N with m € M. So, m € (N : x). By assumption, either (N :
x)=Nor (N:x)=((N: M)N:x). Asxm e N-(N:M)N,som & ((N: M)N: x). Thus,
m € N and hence, x € A(N). Conversely, let = € P — (N : M)N, then (N :x) 2 N |J (N :
M)N : x),s0, 3m € (N : x) such that m & (N |J (N : M)N :x)). Therefore, m ¢ N and m
g ((N:M)N:x). Thus xm € N — (N : M)N with m € N, so x is not almost prime to N
and hence x € A(N). |

Proposition 2.15. Let N be asubmodule of R-module M. If N is almost primal submodule,
then P = A(N) |J (N : M)N is almost prime ideal of R.

Proof. Suppose that r,s € P, we show that either rs € P2 or rs € P. Assume that rs g P2.
Let rsm € N-(N : M)N for some m € M. Then, by Theorem 2.14 gives that rm € (N : s)=
N |J((N : M)N : s) where rm € ((N : M)N : s); hence rm € N which implies that rm € N -(
N:MN. Thusm &€ (N:1r) =N |J ((N: M)N : 1), and so m € N. Therefore, rs is almost
prime to N and rs € P as required. O

Definition 2.16. [1] Let R be ring. Let ¢ : I(R) — I(R) U {0} be a function where I(R)
1s the set of all 1deals of R. A proper ideal I of R 1s a ¢-prime ideal if a, b € R with ab € 1
- ¢(I) impliesa€lorb el

Definition 2.17. [20] Let R be a commutative ring with identity and M be a unitary R-
module. Let S(M) be the set of all submodules of M, and let ¢ : S(M) — S(M) U {0} be a
function. A proper submodule N of M is called ¢-prime submodule if a € R, x € M with ax
€ N - ¢(N) implies that a € (N : M) or x € N.

Definition 2.18. [9] Let R be a commutative ring with unity and M an R-module. A
proper submodule N of M is said to be a 2-absorbing submodule if whenever a, b € R and
m € M with abm € N then ab € (N : M) or am € N or bm € N.

Definition 2.19. [9] Let R be a commutative ring and M an R-module. A proper submodule
N of M is said to be weakly 2-absorbing submodule if whenever a, b € R, m € M with 0 £
abm € N then ab € (N : M) or am € N or bm € N.

The following proposition study the relations between the previous submodules, which were
proved in [7], [3], [4], [16], [10], [9].

Proposition 2.20. Let M be a module over a commutative ring and N a submodule of M.
Then

(1) N is prime — N is weakly prime submodule — N is almost prime submodule.

(2) N is primary — N is weakly primary submodule — N is almost primary submodule.
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(3) N is almost prime submodule — N is almost primary submodule.
(4) N is prime submodule — N is primary submodule — N is primal submodule.
(5) N is prime submodule — N is 2-absorbing submodule — N is weakly 2-absorbing sub-
module.
(6) N is weakly prime submodule — N is weakly 2-absorbing submodule.

3 ¢ - Primary Submodules

Let S(M) be the set of all submodules of M, and ¢ : S(M) — S(M) U {0} be a function.
Then we have the following definition.

Definition 3.1. [7] A proper submodule N of M is called ¢ - primary submodule if

a € R, x € Mwith ax € N - ¢(N) implies that x € N or a* € (N : M), for some positive
integer k. In other word, x € Nora € /(N : M).

Example 3.2. Let R be a commutative ring. Let M be an R-module. Let S{M) be the set of
all submodules of M. Define the following type of the functions ¢ : S(M) — S(M) U {0}
and the corresponding ¢, - primary submodules as follows :

1) pg : dp(N) =0, ¥ N e S(M), defines primary submodules.

2) g0 ¢o(N) ={0},¥ Ne S(M), defines weakly primary submodules.

3) by - 01 (N) = N,V Ne S(M), defines any submodule N.

4) b2 : da(N) = (N : M)N,¥V N e S(M), defines almost primary submodules.

5) by 0 0u(N) = N2, (N:M)'N, ¥V N € S(M), defines ¢,,-primary submodules.

6) b 2 dn(N) =(N: M) IN,n>2 VY Ne S(M), defines n-almost primary submodules.

Remarks 3.3. (1) Since N —d(N) = N —(NNa(N)), so without loss of generality, throughout
this thesis we will consider ¢(N) C N for any N € S(M).

(2) For functions ¢, ¢ :S(M)— S(M)U {0}, we write ¢ < ¢ if ¢(N) C /(N) ¥ N € S(M).
(3)0})581'\«'6 that {;')0 < (r?I)D < P < .< f.':’n—kl =< On < .= (;‘)2 < (.r";)l'

Proposition 3.4. Let R be a commutative ring and N be a submodule of R-module M.
(1)Let 4y, o : S(M)— S(M) U {0} be functions with vy < 3. Then N is i-primary
implies N is 1o-primary.

(2)Let ¢ : S(M)— S(M) U {0} be functions. If N is ¢-prime then N is ¢-primary.

(3)N is primary = N is weakly primary = N is ¢, -primary => N is ¢, 1 -primary =
On-primary (n = 2) = N is almost primary.

Proof. (1)Assume that N is ¢1-primary. Let rm € N — ¢5(N) forr € R, m € M then rm
€ N —44(N). Since N is ¢»-primary, ¥ € (N : M) for some k € N or m € N. Hence N is
)g-primary.

(2) Is trivial and follows immediately from the definition.

(3) This follows from (1) and the ordering of the ¢, s given in Remark 3.3. |

Theorem 3.5. Let R be a commutative ring and M be an R-module. Let ¢: S(M)— S(M)
U {0} be a function. Let N be a ¢-primary submodule of M. If (N : M)N € ¢(N) then N is
a primary submodule of M.

Proof. Let a € R and x € M be such that ax € N. If ax & ¢(N), then since N is ¢-primary,
we have a® € (N : M) for some k € N or x € N. So let ax € ¢(N). In this case we may
assume that aN C ¢(N), because if aN Q @(N') then there exists p € N such that ap ¢
@(N), so that a(x+p) € N - ¢(N). Therefore a € /(N : M) or x + p € N and hence a
€ +/(N: M) or x € N. Second we may assume that (N : M)z € ¢(N). If this is not the
case, there exists u € (N : M) such that ux € ¢(N) and so (a+ u)x € N - ¢(N). Since N is
a ¢ -primary submodule, we have a + u € \/(N: M)orx € N. Soa € /(N : M) or x €
N. Now since (N : M)N € &(N), there exist r € (N : M) and p € N such that rp € ¢(N).
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So (a 4+ 1)(x +p) € N-p(N), and hence a + r € /(N : M) or x + p € N. Therefore a
€ /(N : M) or x € N. Thus N 1s primary submodule. O

Corollary 3.6. Lel N be a weakly primary submodule of M such that (N : M)N #£ 0. Then
N is a primary submodule of M.

Proof. In the above theorem, set ¢ = . -

Remark 3.7. Suppose that N is a ¢-primary submodule of M such that ¢(N) C (N : M )N
(resp. @(N) C (N : M)2N) and that N is not a primary submodule. Then by Theorem
3.5, we have ¢(N) = (N : M)N (resp. &(N) = (N : M)2N). In particular if N is a weakly
primary (resp. ¢s - primary) submodule but not primary submodule then (N : M)N =0
(resp. (N : M)N = (N : M)2N).

Theorem 3.8. [3] Let R = Ry x Ro where each R; is a commutative ring with identity.
Let M; be Ri-module ¥ i € {1,2}, and M = My x My be an R-module with (r1,r2)(m1,ma)
= (rymaq.rams), where r; € R;, m; € M;. Then,

(1)If Ny is a primary submodule of My, then Ny x My is a primary submedule of M.

(2) If Ny is a primary submodule of Ms, then My x Ny is a primary submodule of M.

Remark 3.9. The above theorem is not true for correspondence ¢ - primary submodules in
general, for example if Ny is a ¢g-primary submodule of My then Ny x M; is not necessarily
a ¢p-primary submodule of My xMs. Let By = B2 = My = Ms = Z14, and suppose Ny = 0.
Then evidently Ny is a dg-primary submodule of M;. However, (2, 1)(7, 1) € Ny x Ms, and
(7,1) & N1 x M. Also (2,1)%(2,1) € N1 xMs for any k € N, (2, 1) M ¢ N1 xMa.

Proposition 3.10. Let 7 and Ry be two commutative rings, with R = R x Ry, My
and Ms be Ry and Ro - modules respectively. Let M = My x My be an R-modules with
(r1.72)(my,mg) = (rymy,rams) where r; € R;, m; € M;. Let ¢ : S(M) — S(M) U {0} be
a function. Suppose that N1 is a weakly primary submodule of My such that {0} x My C
(N1 xMs). Then N1 xMs is a ¢-primary submodule of My x Mo.

PT‘OOf. Let ('?']_, '?'2)(.‘?.']_. ;I-'Q) = ('?']_.I']_. '?'2.1'2) S _-‘F\'T]_ Xﬂfg - fﬁ(;?\rl > ﬂ[z), but .-'\'T]_ hd ﬂfz - (,?I)(;'T\‘Tl Xﬂfg)
C Ny x Mz - {0} x My = (N1 —{0}) x M. We have riz; € N1 — {0} and by the assumption
k

on N1 we have r{ € (N :g1 M) for some positive integer k or x; € N;. This gives that
(r1,m0)f = (rf,r5) € (N} tg, My)x Ry = (Ny XMy : g, x gy My x My) for some positive integer
k or (z1,72) € N1 x Ma. Therefore N7 x My is a ¢-primary submodule of M; x M. [l

Proposition 3.11. Let By and Ry be two commutative rings, My and My be By and Hy -
modules respectively. Let M = My x My and ¢ : S(M) — S(M) U {0} be a function. such
that &b, < ¢. Then for any weakly primary submodule Ny of My, Ny x My is a ¢ - primary
submodule of My x M.

Proof. If N1 is a primary submodule of M, then Ny x Ms is primary submodule of M,
(see Theorem 3.8), and so a ¢ - primary submodule of M; x M. Suppose that N7 is not
a primary submodule of M;. Then by Remark 3.7, we have (Ny :g, My)N1 = {0}. This
gives that (Np x My 'Ry %Ry My X;“lfg)i(_?\'rl x Mo) = [(.Nl 'Ry _-'"I.f]_)i_-?\rﬂ x Mo = {0} x Mo,
for all i > 1 and hence we have {0} x My = M2, (N x My tg,wr, M; x M3)' (N x Ms)
= ¢ (N1 x M3) C (N1 x M), and by Proposition 3.10, we have N7 x M is a ¢-primary
submodule of M; x Mas. |

Theorem 3.12. Let R = R1 x Ry such that each R; is a commutative ring with identity.
Let M; be R;-module ¥ 1 € {1,2}, and M = My x My with (r1,r3)(my,ma) = (rymq, rams),
be an R-module, where v; € R;, m; € M; ¥V i € {1,2}, and let «; - S(M)— S(M) U {0}
be a functions, ¢= 1y x . Then each of the following types are ¢-primary submodules of
.-'“I.fl X _-'?lfg,

(i) N1 x No where N; is a proper submodule of M;, with 1;(N;) = N;.
(ii) P x Mo where Py is a primary submodule of Mj.
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(iii) I’y x Ms where Iy is a i -primary submodule of My and a(Ms) = M.
(iv) My x Ps where Py is a primary submodule of Ms.
(v) My x Py where Py is a io-primary submodule of Ma and 1 (My) = M.

Proof. (i) is clear, since N1 x N3 - ¢(Ny xN2) =0

(ii) If P; is a primary submodule of Ay, then by Theorem 3.8, P, x M3 a primary submodule
of My x Mg, and thus i x M3 is ¢-primary submodule of M.

(iii) Let P be a v;-primary submodule of M; and )9(Ms3) = Ms. Let (rq1,72) € R and
(x1,2) € M be such that (r1,r2)(x1, 22) = (r1w1,r9m0) € Py xMa - (P x Ma) = Py x Ms
- 'L-":-‘]_(Pl) b 'L_"':-‘Q(ﬂfg) =PI xMs- '{I-".-‘l(Pj_) X Mo = (Pl — ;-".-‘]_(Pl)) x Ma. Sorax, € Py - L_-":-‘]_(Pl)
but Py is ¢y - primary submodule, so 1§ € (P :p, M;) for some k € N or z; € P;. Therefore
(F'l. ?'Q)k = (pl Ry _-Ur]_) % [y = (Pl x Mo Ry X R My Xﬂ.[rz) or (.'3.71._ .1-‘2) e 1 x Ms. So IP’1 x Ms
18 a ¢-primary submodule of My x M.

Parts (iv), (v) are proved similar to (ii), (iii) respectively. O

Theorem 3.13. Let N be a proper submodule of M and let ¢ : S(M) — S(M) U {0} be a
function. Then the following are equivalent:

(i) N is ¢ - primary submodule of M.

(ii) Forre R - /(N : M), (N:(r))=NU (&(N): (r)).

(iii) For re R - /(N : M), (N :(r)) = Nor (N:(r)) = (d(N):(r)).

Proof. (i)==-(ii) Suppose that N is ¢ - primary such that r & /(N : M). Let m € (N : (r)).
Sorm € N. If rm € ¢(N), then N is ¢ - primary implies m € N, and if rm € ¢(V), then m
€ (¢(N): (r)). Hence (N: (1)) C N U (¢(N) : (r)). The other inclusion hold trivially, since
d(N) CN.

(ii) = (iii) It is clear because (N : (r)) is an ideal of R.

(iii) =(i) Letr € R, m € M such that rm € N - ¢(N). Ifvr & /(N : M), then by assumption,
either (N : (r)) = Nor (N: (r)) = (¢(N) : (r)). Asrm & ¢(N), then m & (S(N) : (r)) and
asrm € N, then m € (N : (r)). Hence (N : (r)) = N, and so m € N as required. O

Theorem 3.14. Let M be an R-module and let N be a proper submodule of M. If for any
ideal I of R and submodule K of M with IK C N and IK € &(N), we have I C /(N : M)
or K C N, then N is ¢ - primary submodule of M.

Proof. Suppose that rm € N - (N) for r € R and m € N. Then (r)(m) = (rm) C N —H(N).
By the assumption, either (m) € N or (r) C /(N : M). Therefore, m € N orr € /(N : M)

and N is ¢-primary submodule of M. O

Proposition 3.15. Let N be a submodule of M with ( N : M ) = /(N : M), then N is

d-primary if and only if N is ¢-prime.

Proof. Trivial from the definitions of ¢-prime and ¢-primary submodules. O

Theorem 3.16. Let M be an R-module and let ¢ : S(M) — S(M) U {0}. Let P be a
d-primary submodule of M.

(i) If L C P is a submodule of M, then P/L is a ¢ -primary submodule of M /L.

(i) Suppose that S is a multiplicatively closed subset of R such that sTip #* STIN and
STHA(P)) C (STY)STIP) and (P : M) N S = 0. Then ST P is an (S71é)-primary
submodule of STIM.

Proof. (i) Let a€ Rand 7 € M/L with a7 € P/L - ¢ (P/L), where = x + L, for some x
€ M. By the definition of ¢, this gives that ax € P - ¢(/P?), which gives that a* € (P : M)
for some k € N or x € P. Therefor «* € (P/L : M/L) for some k € N or ¥ € P/L and so
P/L is ¢r-primary submodule.

(ii) Let a/s € ST'R and x/t € ST'M with ax/st € ST'P - (S71¢)(S71P). Then by our
assumption ax/st € ST!P - S71(#(P)). Therefore there exists u € S such that uax € P -
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(1”), (note that for each v € S, vax & ¢(/’)). Since P is ¢ - primary and (P:M)NS =
0, we have (ua)® € (P : M) for some k € N or x € P. Therefore ((u s)¥ e STYH(P :r M))
C (S 1P:g-1g S~ 11lf)iorsomekeI*T(hecause(P M) C (S71P: 11[ Jorx/t€ STLP.
Hence S™!'P is an (S~'¢)-primary submodule of S~1 ‘lf O

4 ¢ - Primal Submodules

The concept of ¢ - primal ideals in a commutative ring was introduced by A.Y. Darani in
[8]. Let R be a commutative ring with identity. Let ¢ : J(R) — J(R) U {@} be a function
where J(R) denotes the set of all ideals of R. Let I be an ideal of R. An element a € R is
called ¢ - prime to I if ra € I - ¢(/) (with r € R) implies that r € I. We denote by S;(I)
the set of all elements of R that are not ¢ - prime to I. I is called a ¢ - primal ideal of R if
the set P = S,(I) J ¢(I) forms an ideal of R. In this case P is called the ¢ - prime adjoint
ideal (simply adjoint ideal) of I, and I is called a P-¢-primal ideal of R.

Now we generalize the concept of ¢ -primal ideals to ¢ - primal submodules. Let M be
R-module, let S(M) be the set of all submodule of M and ¢ : S(M) — S(M) U {@} be a

function.

Definition 4.1. Let N be a submodule of R-module M and ¢ : S(M) — S(M) U {0} be a
function. An element r € R is called ¢-prime to N if rm € N - ¢(N) (with m € M) implies
that m € N. Otherwise r is not ¢-prime to N.

Remarks 4.2. Let N be a submodule of R-module M. Denote by Syg(N) the set of all elements
of R that are not ¢- prime to N, then

(1) If an element of R is prime to N then it is ¢ - prime to N, so Sp(N) C adj(N) = S(N).
(2) The converse of (1) is not necessarily true in general. For example consider the Z-module
M = Z/24Z, its submodule N = 8Z/247 and assume that ¢ = ¢g where ¢g(N) = 0. Denote
each coset a + 247 in M by @. Then, as 612 =0 € N and 12 € M - N, so 6 is not prime to
N. But if 6.a € N for some @ € M, then 4 divides a. Hence 6.a = 0. This implies that 6 is
do-prime to N. Thus, we have adj(N) € Sp(N).

Definition 4.3. Let R be a commutative ring and let ¢ : S(M) — S(M) U {@} be a function.
A proper submodule N of M is said to be a ¢-primal it the set P = S,(N) [J ¢(N) forms an
ideal of R.

Example 4.4. Let R be a commutative ring. Let M be an R-module. Let S(M) be the set
of all submodules of M. Define the following type of the functions ¢ : S(M) — S(M) U
{0} and the corresponding ¢ - primal submodules as follows :

1) g : og(’\) =0,V Ne S(M), defines primal submodules.

2)d0 s oo(N) ={ 0},¥V Ne S(M), then defines weakly primal submodules.
3) oy - ol('\) N, ¥ N e S(M), defines any submodule N.
4) oo d2(N) = (N: M)N,V Ne S(M), defines almost primal submodules.

5) g un_(f\) =2, (N :M)'N, ¥ N e S(M), defines &,,-primal submodule.
6) n 2 du(N) = (N M)"IN, ¥ 0> 2 ¥ Ne S(M), defines n-almost primal submodules.

Theorem 4.5. Let P be an ideal of a commutative ring B. Let N be a proper submodule of
R-module M. Let ¢ : S(M) — S(M) U {0} be a function. Then the following are equivalent:
(1) N is P-¢-primal submodule.

(2) For everyx & P - ¢(N), (N:2) = N (¢(N) : 2) and for x € P - ¢(N),

(N:xz) 2 N (¢(N): ).

(3) For every v P - d(N), (N :2) = Nor(N:z) = (0(N):z) and for

z€ P-¢(N), (N:z)2 Nand (N:z) 2 (¢(N):x).

Proof. (1 — 2) Assume that N is P-¢-primal submodule then P - ¢(N) consists entirely of
elements of R that are not ¢ - prime to N. Let x &€ P - &(N) then x is ¢-prime to N. Clearly
N U (¢(N):2) € (N :x). On the other hand, for every m € (N : x), if mx € ¢(/NV) then m
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€ (¢(N):2) and if mx € ¢(N) then x is ¢ - prime to N gives m € N. Hence
meN|[J(¢(N):z), thatis (N:x) CN U (¢(N) : 2). Therefor (N :x) =N U (¢(N) : 2).
Now assume that x € P - ¢(/N') then x is not ¢ - prime to N, so 3 m € M - N such that mx
€ N-¢(N). Hence m € (N : x) - (N |J (¢(N) : x)). Thus (N : x) 2 N {J (6(N) : )
(2 — 3) It is clear because (N : x) is an ideal in R.
(3 — 1) We want to prove that P-¢(N) consists exactly of all elements of R that are not
¢-prime to N. Hence N is P-¢-primal.
Let x ¢ P-¢(IV), then (N :x) = N U (¢(V) : x). We want to prove that x ¢ S4(N). Let
xm € N - ¢(N) with m € M. So, m € (N : x). By assumption, either (N : x) = N or (N :
x) = ((N) x). Asxm € N-¢(N),som & (S(N) : x). Thus, m € N and hence, x &€ S, (N).
Conversely, let x € P - ¢(N), then (N :x) 2 N |J (¢(N) : x), s0, 3m € (N : x) such that m
g (N (é¢(N): x)). Therefore, m € Nand m & (¢(N) : x). Thus xm € N-¢(N) with m &
N, so x is not ¢-prime to N and hence x € S4(N). Hence N is P-¢-primal submodule. O

Proposition 4.6. Let R be a commutative ring and M be R-module. Let ¢ : S{M) — S(M)
U {0} be a function. If N is ¢-primal submodule of M then P = Sp(N) |J &(N) is ¢-prime
ideal of R.

Proof. Suppose that r;s € P, we show that either rs € ¢(P) or rs € P. Assume that rs &
@(F). Let rsm € N - ¢(N) for some m € M. Then, hy Theorem 4.5 gives that rm € (N : s)=
N U (¢(N) : s) where rm & (¢(N) : s); hence rm € N which implies that rm € N -¢(V).
Thusm € (N:r) =N (¢(N): r), and so m € N. Therefore, rs is ¢-prime to N and rs &
P as required. -

Notation 4.7. Let N be a ¢-primal submodule of R-module M. By Proposition 4.6, P =
Sa(N) U ¢(N) is ¢-prime ideal of R. In this case P is called the ¢-prime adjoint ideal and
N is called a P-¢-primal submodule of M.

The concepts ” primal submodule” and ” ¢-primal submodule ” are different. In fact, neither
implies the other. We will show this by the following examples, in Example 4.8 below we
give a primal submodule that is not ¢ - primal. An example of ¢- primal submodule which
i1s not primal s given in Example 4.9.

Example 4.8. [5],[8] Consider the submodule N = 8Z /247 of Z-module M =Z/24Z. Denote
each coset a + 24Z in M by @. Let ¢ = ¢g (weakly primal).

(1) since 0 # 24 € Nand 0# 4.2 € N with 2, 4 € M-N we have 2,4 € Sy, (N). If 6.a € N
for somea € M then 4 divides a and hence 6.a = 0. This shows that 2+4 = 6 is ¢g- prime
to N so 6 & Sy, (N). Therefor Su(N) |J @(N) is not an ideal of Z, that is N is not ¢-primal
submodule of M.

(2) Now set P = 9Z /247 then every element of P is not prime to N. Assume that @ & P,
ifamn € N for someTn € M then 8 divides n, that ism € N. Hence @ is prime to N so @
& S(N) = adj(N). So we have S(N) = P, that is N is P-primal submodule. This example
show that a primal submodule need not necessarily be ¢-primal.

Example 4.9. [5] Consider the Z-module M = Zg and denote every integer a modulo 6 by
a. Consider the submodule N = {0} of M and let ¢ = ¢y then:

(1) 0 is weakly prime to N so Sy, (N) = 0. Thus N is weakly primal submodule of M.

(2) Since 23 =0 € Nand 3.2 =0 € N, so 2,3 € Sy(N) while 3-2 = 1 is prime to N, so we
have 1 & S(N). Therefore N is not a primal submodule of M.

This example shows that ¢ -primal submodule need not necessarily be primal.

Theorem 4.10. Let M be R-module and ¢ : S(M) — S(M) U {0} be a function. Let N
and L be submodules of M with L C &(N) then N is a ¢-primal submodule of M iff N/L is
a ¢r,-primal submodule of M/L.

Proof. Assume N is P-¢-primal submodule. Suppose that a + L is an element of M/L that
is not ¢ - prime to N/L, so there exists b € M - N with (a + L)(b + L) € N/L - ¢ (N/L).
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In this case ab € N - ¢(N) with b € M - N implies that a is not ¢ - prime to N. Hence a

€ S4(N) C P and so a + L € P/L. Now assume that ¢ + L € P/L then ¢ € P = S3(N) U
O(N). If ¢ € ¢(N) then ¢ + L € ¢ (N/L), so assume that ¢ € Sz(N), that is ¢ is not ¢ -
prime to N then ed € N - ¢(N) for some d € M - N. Consequently, (¢ + L)(d + L) € N/L
-(¢(N)/L) = N/L - ¢ (N/L) with d + L € M/L - N/L. This implies that ¢ + L is not ¢r,
- prime to N/L, so ¢ + L € 5,4, (N/L). We have already shown that P/L = S, (N/L) J
o1 (N/L). Therefore N/L is ¢z, - primal.

Conversely, suppose that N/L is ¢p - primal in M/L with the adjoint ideal P/L. For every a
€ P-¢(N)wehavea+LeP/L-¢,(N/L)=S,,(N/L), s0 a+ L is not ¢7-prime to N/L,
thus (a + L)(b + L) € N/L - ¢£(N/L) for some b + L € M/L - N/L. In this case b € M -
N and ab € N - ¢(N) implies that a is not ¢-prime to N. On the other hand, assume that c
€ R is not ¢-prime to N then cd € N - ¢(N) for some d € M - N so we have (¢ + L)(d + L)
€ N/L - ¢ (N/L) with d + L € N/L, that is ¢ + L is not ¢z-prime to N/L. Hence ¢ + L €
P/L - ¢ (N/L), so we have ¢ € P - ¢(N). It follows that P = S4(N) |J ¢(N) which implies
that N is P-¢-primal submodule of M. O

Remark 4.11. [5] Let R be a commutative ring, M an R-module and S a multiplicatively
closed set in R. If K is a submodule of ST!M, define K N M = v 1K) = {m € M : m/1 €
K}, where v: M — S~IM is the natural mapping m — m/1. Clearly, X N M is a submodule
of M.

Proposition 4.12. Let R be a commutative ring and S a multiplicatively closed subset of
R. Let ¢ : S(M) — S(M) U {0} be a function. Let N be a P-é-primal submodule of an
R-module M with P () S = 0.

(1) Let N = a/s € STIN - STY&(N)) (with a € M, s € S), then a € N.

(2) If STH(¢(N)) # SN then N = STIN () M.

Proof. (1) Assume that A = a/s € SN - S71(¢(N)) then a/s = b/t for some b € N, t €
S. In this case, since us € S and b € N, then uta = ush € N for some u € S. If uta € ¢(N)
then a/s = uta/uts € S~ (¢(N)) which is a contradiction, so we have uta € N - #(N). If a
¢ N then ut is not ¢-prime to N, so ut € P (] S which contradicts the hypothesis. Therefore
a € N.

(2) Let m € S7IN (1 M then m/1 € S7!N, so I s € S such that sm € N. If sm & ¢(N)
and m & N then s is not ¢-prime to N, so s € P (| S, which a contradiction. Thus m €
N. If sm € ¢(N) then m/1 = sm/s € S71($(N)) which implies that m € S™(¢(N)) (| M.
Therefore (STIN M) = N [J (87 (¢(N) M), so (STINOAM)=Nor (STENNM)
= ((S71o(N)) N M). But S7I N # S71H(#(N)),s0 STEN M # S~ (¢(N)) | M. Thus
STINAM =N. L

5 ¢-2-Absorbing Submodules

In this section, we introduce the concept of ¢-2-absorbing submodules which is a general-
1zation to concept of 2-absorbing submodules. Let R be a commutative ring with identity
and M be a unitary R-module. Let S(M) be the set of all submodules of M, and ¢ : S(M)
— S(M) U {0} be a function.

Definition 5.1. A proper submodule N of M is called ¢-2-absorbing submodule if r.s € R,
m € M with rsm € N - ¢(N) implies that rs € (N : M) or rm € N or sm € N.

Example 5.2. Let R be a commutative ring. Let M be an R-module. Let S(M) be the set
of all submodules of M. Define the following type of the functions ¢n : S(M) — S(M) U
{0} and the corresponding ¢, - primal submodules as follows :

1) og @ dg(N) =0,V N e S(M), defines 2-absorbing submodules.

2) o : go(N) ={ 0}, ¥V Ne S(M), then defines weakly 2-absorbing submodules.

3) b1 91(N) = N,¥ N e S(M), defines any submodule N.
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4) by s da(N) =(N: M )N,V N € S(M), defines almost 2 absorbing submodules.
5) b : r_:au_(f\) =2 (N : M)'N, ¥ N € S(M), defines ¢,-2-absorbing submodule.
6) dn : dn(N) = (N : M)~ 1’\', Yn>2VNCc S(ﬂf), defines n-almost 2-absorbing
submodules.

Remarks 5.3. (1) every 2-absorbing submodule is ¢-2-absorbing submodule but the converse
need not be true in general. For example, let M = Zg be a Z module and let N = {0}. N is
¢o(weakly)-2-absorbing submodule but not 2-absorbing submodule because 2.2.2 = 0 € N
and4 gNand4 & (N:M)= {8 :n e Z}.

(2) Observe that ¢p < ¢0 < 0w < .S g1 < Op < < 2 < 1.

Proposition 5.4. Let R be a commutative ring and N be a submodule of R - module M.
(1) Let 4y, g : S(M)— S(M)JI{0} be functions with iy < 3. Then N is iy -2-absorbing
submodule implies N is 1)2-2-absorbing.

(2) N is 2-absorbing = N is weakly 2-absorbing = N is ¢,,- 2-absorbing =—> N 1s ¢p11-
2-absorbing = ¢,,-2-absorbing(n>2)=—=> N is ¢o-2-absorbiny.

Proof. (1) Assume that N is ¢1-2-absorbing submodule of M. Let rsm € N — &2(N) for r,s
€ R, m £ M then rsm € N — ¢1(N). Since N is ¢1 -2-absorbing, rs € (N : M) or rm € N
or sm € N. Hence N is ¢o-2-absorbing submodule of M.

(2) This follows from (1) and the ordering of the ¢,/ s given in Example 5.2 and Remarks

5.3. m

Theorem 5.5. Let ¢ : S(M)— S(M) U {0} be function. Let N be a ¢-2-absorbing submodule
of M. If (N : M)N € &(N), then N is a 2-absorbing submodule of M.

Proof. Let rs € R and m € M be such that rsm € N. If rsm ¢ ¢(N) and since N is ¢ -
2-absorbing then we have rs € (N :p M) orrm € N or sm € N. So let rsm € ¢(N). In this
case we may assume that rsN C ¢(N). Because if rsN ¢ ¢(N'), then there exists p € N such
that rsp & &(N), so that rs(m + p) € N - &(N). Therefore rs € (N : M) or r(m + p) € N
or b(m +p) € N and hence rs € (N : M) orrm € N or sm € N. Second we may assume

that (V : M)m € ¢(N). If this is not the case, there exists u € (N : M) such that um ¢
o(N ) and so (r+usm € N — ¢(N). Since Nis a ¢ -2- absorlnncf submodule, we have (r +
u)s € (N : M) or ( r—l—u)mENoramEN Thusrae(\ oerENorsmeN Now
since (\ ‘R M)N € ¢(N), there exist ve (N : M) and p € N bllCh that vp € ¢(N). So (r +

v)s(m + p) € N - ¢(N), and hence (r —I—\)b e(N:M)or (r +v)(m + p) € N or s(m + p)
€ N. Therefore 1s € (N :M)orrm € N orsm € N. Thus N is 2-absorbing submodule. [

Corollary 5.6. Let N be a weakly 2-absorbing submodule of M such that (N :g M)N #£ 0.
Then N is a 2-absorbing submodule of M.

Proof. In the above Theorem set ¢ = dg. O

Remark 5.7. Suppose that N is a ¢-2-absorbing submodule ot M such that ¢(N) € (N :
M)N and N is not 2-absorbing submodule then by Theorem 5.5, we have ¢(N) = (N : M)N.
In particular if N is weakly 2-absorbing submodule but not 2- a])SOI‘])an“ then (N : M)N = 0.

Theorem 5.8. [13] Let R = Ry x Ry such that each R; s a commutative ring with identity.
Let M; be Ri-module ¥V i € {1,2} and M = M, x My be an R-module with (ri,vr2)(m1,ma)
= (rymy,romsg), where vy € Ry, m; € M; ¥V i € {1,2}. Then we have:

(1) If N1 is a 2-absorbing submodule of My, then N1 x My is a 2-absorbing submodule of
M.

(2) If Ny is a 2-absorbing submodule of My, then My x Ny is a 2-absorbing submodule of
M.

Proof. Because the proof of (1) and (2) are similar, So we only prove (1). Hence suppose
that Ny is a 2-absorbing submodule of My and let ry.s1 € 71, ra, s9 € Ry, my € My and mo
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€ My such that (rq,r3)(s1,82)(my,ma) = (rysymy, rasgms) € Ny xMs. then rysymy € Ny.
Since N7 is 2-absorbing submodule of My, So r1s1 € (N1 : My) or rimy € Ny or s1my €
_-‘7\'71. So ('?']_.?'2)(51._52) = (7'151,?'282) = (_-‘7\'71 N _-'ql.fl) X (_-‘ql.fg H _-‘ql.fg) = (.-'1\‘—1 X ﬂfg H _-‘ql.fl s ﬂfg) or
(r1,7r9y(my,ma) € Ny x My or (s1,s2)(my,mg) € Ny x Ms. Hence N; x My is 2-absorbing
submodule of M. O

Example 5.9. The above theorem is not true for correspondence ¢ - 2-absorbing submodules
in general, for example if N1 is a ¢o-2-absorbing submodule of My then N1 x My is not
necessarily a ¢og - 2-absorbing submodule of My x My, Let By = Ro = My = My = Zg and
suppose that Ny = {0} then evidently Ny is a ¢g-2-absorbing submodule of My. However, 0
# (2,1)(2,1)(2,1) € Ny x Ma and (2, 1)(2,1) = (4,1) & (N1 x My : My x M) and (2,1)(2,1)
& Ni x My, Thus Ny x My is not ¢g-ubsorbing submodule of M.

Proposition 5.10. Let R and R be two commutative rings, My, and My be Ry and Ra -
modules respectively. Let M = My x My and define ¢ : S(M) — S(M) U {0} be a function.
Suppose that Ny is a weakly 2-absorbing submodule of M, such that

{0} x My C ¢(N1 xMaz). Then N1 xMs is a ¢-2-absorbing submodule of My x M.

Proof. Let r1.51 € Ry, r2.50 € R, o1y € My and 22 € M. Let (?'1,?'2)(51,.5'2)(;1'1,.‘!.'2) =
('?'1.5'1."3.-'1._'?'2.5'2.‘?.52) = .-'1\"—1 XﬂIQ - t,?')(f\"—l X ﬂJ.rz). Since .N]_ * ﬂfz - f_b(_-‘i\"-l K _-‘U—-;g) Q .-'1\"-1 * ﬂfz -
{0} x M3 = (Ny — {0}) x M, so we have rysy2qy € N; — {0} and by the assumption on
Ni we have r1s1 € (N7 :p1 Mi) or riz; € Ny or sy € Nyp. If ris1 € (N7 :g, M;) then
('?'1._'?'2)(:’1’]_,:’1’2) = (?'151,?'2.‘\‘2) € (_-‘F\'T]_ Ry J[]_) hd RQ = (.-'1\"—1 hd ﬂfg ‘Ri1XRa ﬂf]_ x _11—2) It riaro
S .-'1\'71 then ('?'1._'?'2)(;151,;1-'2) = ('?']_;131,'?'2;152) = ;‘i\rl X .-'Urg. If S1r1 € _-‘F\'T]_ then (.sl,sg)(.'?.-'l._g) =
(s171, s2w2) € N1 x My, Therefore N1 x My is ¢-2-absorbing submodule of M. L]

In the next theorem we give characterizations of ¢ -2-absorbing submodules.

Theorem 5.11. Let N be a proper submodule of M and let ¢ : S(M) — S(M) U {0} be a
function. Then the following are equivalent:

(i) N is a ¢-2-absorbing submodule of M;

(it) for any r,s € R, with rs € (N : M), we have (N:rs) = (N:v)|J (N :5) U (@(N) :rs);
(iit) for any r,5 € R, with rs € (N : M), we have, (N : rs) = (N :7) or (N :rs) = (¢(N) : 5)
or (N :rs) = (6(N) : rs).

Proof. (i)=(ii) Let m € (N : rs) then rsm € N. If rsm € ¢(N) then N is a ¢-2-absorbing
submodule of M implies rm € N or sm € N, that is m € (N: 1) orm € (N :s). If rsm €
®(N) then m € (¢(N) : rs). As we may assume that &(N) C N, the other inclusion always
hold.

(ii) — (iii) If an ideal is the union of two ideals, it is equal to one of them.

(1i1)==(1) Let rsm € N - ¢(N) with rs &€ (N : M) then m € (N : rs) and m € (&(N) ws), so
me (N:r)orm € (N:s) that is, rm € N or sm € N. |

Theorem 5.12. Let M be an R-module and let ¢ : S(M) — S(M) U {0} be a function. Let
N be a ¢-2-absorbing submodule of M.

(i) If L C N is a submodule of M, then N/L is a ¢ -2-absorbing submodule of M/L.

(ii) Suppose that S is a multiplicatively closed subset of R such that ST'N # S='M and
STHO(N)) C(ST1)(STIN) with (N :g M) N S =0. Let S~'¢ : S(STIM) — S(STIM)
U {@}. Then STIN is an (S~ ¢)-2-absorbing submodule of ST M.

Proof. (1) Let r;s € R and 7 € M/L with rs¥ € N/L - ¢ (N/L), where T = x 4+ L, for some
x € M. By the definition of ¢y, this gives that rsx € N - (¢(/N) 4+ L). So we have rsx € N -
@(N'), which gives that rs € (N : M) or rxe€ N or sx € N. Therefore rs € (N/L : M/L) or
rz € N/L or s¥ € N/L and so N/L is ¢, - 2-absorbing submodule.

(i) Let a/s , b/w € ST'R and x/t € ST'M with abx/swt € SN - (S71¢)(S7IN). Then
by our assumption abx/swt € STIN - S71(¢4(NV)). Therefore there exists u € S such that
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uabx € N - ¢(N), (note that for each v € S, vabx € ¢(N)). Since N is ¢-2-absorbing
submodule and (N : M) S = 0, we have uab € (N : M) or ax € N or bx € N. Therefore
ab/sw € STYN :g M) C (SN 15215 STIM) or ax/st € STIN or bx/wt € ST!N. Hence
STIN is an (S~1¢)-2-absorbing submodule of ST1M. |

Proposition 5.13. Let R = By x Ro x ... X By and M = My x Max ... xM, be an R -
module, where R; is a commutative ring and M; is an R; - module, for each i € {1,2,....,n}.
Let N = Nix Nox ...xN, be a ¢ - 2-absorbing submodule of M, where N; 15 a submodule
of M; and let ¢ : S(M;) — S(M;)U {0} Vie {1,2,....n} and ¢(N) = 1 (N1) x 12(N2)
X .. XUp(Ny). Then Nj is a 1), —-—abso’r‘bwu qubmoduk of M;, for each j with N; # M.

Proof. Let x; € M; and a;.b; € R; such that a;b; x; € N;j - ¢;(N;). Thus (1,1,...,1,a;,...,1).
(11,...1,0;,...1).(0,0,....0,2; ...0)= (0,0,...0,a;b;2; ... 0)6 N - ¢(N), but N is ¢-2-absorbing
submodule. Therefore, (1, 1 1 aj 1)1 1b;,.01) € (N2 M) or (1.1,...,1,a;,...1).

(0,0,....0,2;.0,...,0) € N or (1 1 S1b;. . 1)(0, 0 ,0.2;,0,...,0) € N. So we have a;b; € (N} :
M;)or ajr; € Nj or bjx; € Nj. Thu:: .\J is 1;-2- ahsorhing submodule for each j. O

Corollary 5.14. Let R = Ry x R2 x ... x Ry and M = My x Ms x ... x M, an
R-module and N = N; x Ny x ... x N,,, where R; is a commutative ring and M, is an
R; - module and N; 1s a submodule of M;, forie {1.2....n}. Let N be a &, -2-absorbing

submodule of M. Then N; is a ¢, -2- absorbznj submodufe of M;, for each j with N; # M;
and n > 2.

Proof. We have ¢,(N) = (N:M)" "IN = (N;:M)" LN x (Ng:M)" Ny x ... x(N,:M)" "IN,

= &n(N1) X 0n(Na) x ... X ¢n(Ny). So the result follows by Proposition 5.13. [l
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