

Volume 11, Issue 1

Published online: January 11, 2017

Journal of Progressive Research in Mathematics www.scitecresearch.com/journals

On ϕ - Classes of Submodules

Arwa Eid Ashour Department of Mathematics, The Islamic University of Gaza, Palestine Mohammed Mahmoud AL-Ashker Department of Mathematics, The Islamic University of Gaza, Palestine Al-Hussain Kamal Abu oda Department of Mathematics, The Islamic University of Gaza, Palestine

Abstract

Let R be a commutative ring with identity and let M be a unitary R-module. Let S(M) be the set of all submodules of M and $\phi:S(M)\to S(M)\cup\{\emptyset\}$ be a function. A proper submodule N of M is said to be a ϕ -prime (resp. a ϕ -primary) submodule if $am\in N-\phi(N)$ for $a\in R$, $m\in M$ implies that either $m\in N$ or $a\in (N:M)$ (resp. $a\in \sqrt{(N:M)}$). These concepts were introduced by N. Zamani and M. Bataineh, in this paper, we study the concept of ϕ -primary submodule in details. Also, we introduce the concepts of ϕ -primal submodules and ϕ -2-absorbing submodules.

Keywords: ϕ -prime submodules, ϕ -primary submodules, ϕ -primal submodules, ϕ -prime to submodule, ϕ -2-absorbing submodules.

1 Introduction

Let R be a commutative ring with identity and let M be a unitary R - module. Let S(M) be the set of all submodules of M and $\phi:S(M)\to S(M)\bigcup \{\emptyset\}$ be a function. A proper submodule N of M is said to be a ϕ -prime submodule if am \in N - $\phi(N)$ for a \in R, m \in M implies that either m \in N or a \in (N : M). This definition was introduced by Zamani and Khaksari as a generalization of prime submodules that covers the definitions of prime, weakly prime, almost prime and m-almost prime submodules, see [14] and [20]. In our work, we study the concept of ϕ -primary submodule that was introduced in [15] in more details. We clarify that this definition is a generalized of primary submodules that covers the definition of primary, weakly primary, almost primary and m-almost primary submodules.

Let $\phi: J(R) \longrightarrow J(R) \bigcup \{\emptyset\}$ be a function with J(R) the set of all ideals of R. Let I be an ideal of R, an element $a \in R$ is called ϕ -prime to I if $ra \in I$ - $\phi(I)$ (with $r \in R$) implies that $r \in I$. We denote by $S_{\phi}(I)$ the set of all elements of R that are not ϕ -prime to I. I is called a ϕ -primal ideal of R if the set $P = S_{\phi}(I) \bigcup \phi(I)$ forms an ideal of R. The concept of ϕ -primal ideal over commutative ring was introduced by Darani (see[8]). In our work, we generalize the concept of ϕ -primal ideal to ϕ -primal submodule. We also, introduce the concept of ϕ -2-absorbing submodules which is a generalization to 2-absorbing submodules.

2 Basic Concepts

In this section, we recall some basic definitions and study some important results that we need throughout this paper.

- **Definition 2.1.** [17] Let M be an R-module. A proper submodule N of M is said to be a prime submodule if whenever $rm \in N$ for $r \in R$ and $m \in M$ we get either $m \in N$ or $rM \subseteq N$ (equivalent $r \in (N : M)$).
- **Definition 2.2.** [4] Let M be an R-module and N be a proper submodule of M. N is called a *weakly prime submodule* of M if, whenever $r \in R$ and $m \in M$ such that $0 \neq rm \in N$, then either $m \in N$ or $r \in (N : M)$.
- **Definition 2.3.** [15] Let M be an R-module. A proper submodule N of M is called an almost prime submodule of M if, whenever $r \in R$ and $m \in M$ such that $rm \in N (N : M)N$, then either $m \in N$ or $r \in (N : M)$.
- **Definition 2.4.** [18] Let M be an R-module. A proper submodule N of M is said to be a primary submodule if $rm \in N$ for $r \in R$ and $m \in M$ implies that either $m \in N$ or $r^nM \subseteq N$ for some positive integer n.
- **Definition 2.5.** [3] A proper submodule N of a module M over a commutative ring R is said to be a weakly primary submodule if whenever $0 \neq rm \in N$, for some $r \in R$, $m \in M$, then $m \in N$ or $r^nM \subseteq N$ for some $n \in \mathbb{N}$.
- **Definition 2.6.** [16] Let M be an R-module and N a proper submodule of M, N is called an almost primary submodule of M if, whenever $r \in R$, $m \in M$ such that $rm \in N (N : M)N$, then either $m \in N$ or $r \in \sqrt{(N : M)}$.
- **Definition 2.7.** [12] Let M be an R-module and N a submodule of M. The element $a \in R$ is (left) prime to N if $am \in N$ ($m \in M$) implies $m \in N$. The subset A of R is uniformly not prime to N, if there exists an element $u \in M N$ with $Au \subseteq N$.
- **Definition 2.8.** [12] Let M be an R-module and N a submodule of M. The adjoint of N is the set of all elements of R that are not prime to N and denoted by adj(N). On other words, $adj(N) = \{r \in \mathbb{R} : rm \in \mathbb{N} \text{ for some } m \in M N\}.$
- **Definition 2.9.** [12] Let M be an R-module. A proper submodule N of M is said to be primal if adj(N) forms an ideal of R. In this case the adjoint of N will also be called the adjoint ideal of N.
- **Definition 2.10.** [5] Let N be a submodule of an R-module M. An element $r \in R$ is called weakly prime (simply wp) to N if $0 \neq rm \in N$ ($m \in M$) implies that $m \in N$. Otherwise r is not weakly prime (simply nwp) to N. Denote by W(N) the set of elements of R that are nwp to N.
- **Definition 2.11.** [5] Let R be a commutative ring and let N be a proper submodule of an R-module M. N is called *weakly primal* if the set $P = W(N) \cup \{0\}$ forms an ideal of R. P is called the *(weakly) adjoint ideal of N* and we also say that N is a *P-weakly primal submodule of M*.
- The concept of almost primal ideals in a commutative ring was introduced by A.Y. Darani in [11]. Let R be a ring and let I be a proper ideal of R. An element $a \in R$ is called almost prime to I if $ra \in I$ -I² (with $r \in R$) implies that $r \in I$. We denote by A(I) the set of all elements of R that are not almost prime to I. A proper ideal I is called almost primal if the set $P = A(I) \cup I^2$ forms an ideal of R. This ideal P is an almost prime ideal of R, called the almost prime adjoint ideal of I. In this case we also say that I is a P-almost primal ideal. Now we give some definitions and result in almost primal submodules.
- **Definition 2.12.** Let M be an R-module and N a submodule of M. The element $a \in R$ is (left) almost prime to N if $am \in N$ -(N : M)N ($m \in M$) implies $m \in N$. Denote by A(N) the set of elements of R that are not almost prime to N.
- **Definition 2.13.** Let R be a commutative ring and let N be a proper submodule of an R-module M. N is called almost primal if the set $P = A(N) \cup (N : M)N$ forms an ideal of R. P is called the *(almost)* adjoint ideal of N and we also say that N is a P-almost primal submodule of M.

Theorem 2.14. Let P be an ideal of a commutative ring R. Let N be a proper submodule of R-module M. The following are equivalent:

- (1) N is P-almost primal.
- (2) For every $x \notin P$ (N:M)N, $(N:x) = N \bigcup ((N:M)N:x)$ and for $x \in P$ (N:M)N, $(N:x) \supseteq N \bigcup ((N:M)N:x)$.

Proof. (1) ⇒ (2) Assume that N is P-almost primal then P-(N: M)N = A(N). Let $x \notin P$ - (N: M)N then x is almost prime to N. Clearly N ∪ ((N: M)N: x) ⊆ (N: x). For every $m \in (N: x)$, if $mx \in (N: M)N$ then $m \in ((N: M)N: x)$ and if $mx \notin (N: M)N$ then x is almost prime to N, gives $m \in N$. Hence $m \in N \cup ((N: M)N: x)$, that is $(N: x) \subseteq N \cup ((N: M)N: x)$. Therefor $(N: x) = N \cup ((N: M)N: x)$. Now assume that $x \in P - (N: M)N$ then x is not almost prime to N so $\exists m \in M$ -N such that $x \in N - (N: M)N$. So $x \in M$ then x is not almost prime to N so $x \in M$ thence, $x \in M$ thence, x

 $(2) \Longrightarrow (1)$ We want to prove that P-(N: M)N consists exactly of all elements of R that are not almost prime to N. Hence N is P-almost primal.

Let $x \notin P - (N:M)N$, then $(N:x) = N \cup ((N:M)N:x)$. We want to prove that $x \notin A(N)$. Let $xm \in N - (N:M)N$ with $m \in M$. So, $m \in (N:x)$. By assumption, either (N:x) = N or (N:x) = ((N:M)N:x). As $xm \in N - (N:M)N$, so $m \notin ((N:M)N:x)$. Thus, $m \in N$ and hence, $x \notin A(N)$. Conversely, let $x \in P - (N:M)N$, then $(N:x) \supseteq N \cup ((N:M)N:x)$, so, $\exists m \in (N:x)$ such that $m \notin (N \cup ((N:M)N:x))$. Therefore, $m \notin N$ and $m \notin ((N:M)N:x)$. Thus $xm \in N - (N:M)N$ with $m \notin N$, so x is not almost prime to $x \in A(N)$.

Proposition 2.15. Let N be asubmodule of R-module M. If N is almost primal submodule, then $P = A(N) \bigcup (N : M)N$ is almost prime ideal of R.

Proof. Suppose that $r,s \notin P$, we show that either $rs \in P^2$ or $rs \notin P$. Assume that $rs \notin P^2$. Let $rsm \in N$ -(N: M)N for some $m \in M$. Then, by Theorem 2.14 gives that $rm \in (N:s)$ = N $\bigcup ((N:M)N:s)$ where $rm \notin ((N:M)N:s)$; hence $rm \in N$ which implies that $rm \in N$ -(N: M)N. Thus $m \in (N:r) = N \bigcup ((N:M)N:r)$, and so $m \in N$. Therefore, rs is almost prime to N and $rs \notin P$ as required. □

Definition 2.16. [1] Let R be ring. Let $\phi : I(R) \to I(R) \cup \{\emptyset\}$ be a function where I(R) is the set of all ideals of R. A proper ideal I of R is a ϕ -prime ideal if a, b \in R with ab \in I - $\phi(I)$ implies a \in I or b \in I.

Definition 2.17. [20] Let R be a commutative ring with identity and M be a unitary R-module. Let S(M) be the set of all submodules of M, and let $\phi : S(M) \to S(M) \cup \{\emptyset\}$ be a function. A proper submodule N of M is called ϕ -prime submodule if $a \in R$, $x \in M$ with ax $\in N$ - $\phi(N)$ implies that $a \in (N : M)$ or $x \in N$.

Definition 2.18. [9] Let R be a commutative ring with unity and M an R-module. A proper submodule N of M is said to be a 2-absorbing submodule if whenever a, $b \in R$ and $m \in M$ with $abm \in N$ then $ab \in (N : M)$ or $am \in N$ or $bm \in N$.

Definition 2.19. [9] Let R be a commutative ring and M an R-module. A proper submodule N of M is said to be *weakly 2-absorbing submodule* if whenever a, $b \in R$, $m \in M$ with $0 \neq abm \in N$ then $ab \in (N : M)$ or $am \in N$ or $bm \in N$.

The following proposition study the relations between the previous submodules, which were proved in [7], [3], [4], [16], [10], [9].

Proposition 2.20. Let M be a module over a commutative ring and N a submodule of M. Then

- (1) N is prime \rightarrow N is weakly prime submodule \rightarrow N is almost prime submodule.
- (2) N is primary \rightarrow N is weakly primary submodule \rightarrow N is almost primary submodule.

- (3) N is almost prime submodule \rightarrow N is almost primary submodule.
- (4) N is prime submodule \rightarrow N is primary submodule \rightarrow N is primal submodule.
- (5) N is prime submodule \rightarrow N is 2-absorbing submodule \rightarrow N is weakly 2-absorbing submodule.
- (6) N is weakly prime submodule \rightarrow N is weakly 2-absorbing submodule.

3 ϕ - Primary Submodules

Let S(M) be the set of all submodules of M, and $\phi : S(M) \longrightarrow S(M) \cup \{\emptyset\}$ be a function. Then we have the following definition.

Definition 3.1. [7] A proper submodule N of M is called ϕ - primary submodule if $a \in \mathbb{R}$, $x \in M$ with $ax \in \mathbb{N}$ - $\phi(N)$ implies that $x \in \mathbb{N}$ or $a^k \in (\mathbb{N} : M)$, for some positive integer k. In other word, $x \in \mathbb{N}$ or $a \in \sqrt{(N : M)}$.

Example 3.2. Let R be a commutative ring. Let M be an R-module. Let S(M) be the set of all submodules of M. Define the following type of the functions $\phi_{\alpha}: S(M) \longrightarrow S(M) \cup \{\emptyset\}$ and the corresponding ϕ_{α} - primary submodules as follows:

- 1) ϕ_{\emptyset} : $\phi_{\emptyset}(N) = \emptyset$, $\forall N \in S(M)$, defines primary submodules.
- 2) $\phi_0: \phi_0(N) = \{0\}, \forall N \in S(M), defines weakly primary submodules.$
- 3) $\phi_1:\phi_1(N)=N, \forall N\in S(M), defines any submodule N.$
- 4) $\phi_2:\phi_2(N)=(N:M)N, \forall N\in S(M), defines almost primary submodules.$
- 5) $\phi_w:\phi_w(N)=\bigcap_{i=1}^\infty(N:M)^iN, \ \forall \ N\in S(M), \ defines \ \phi_w$ -primary submodules.
- 6) $\phi_n: \phi_n(N) = (N:M)^{n-1}N, n \geq 2, \forall N \in S(M), defines n-almost primary submodules.$

Remarks 3.3. (1) Since $N - \phi(N) = N - (N \cap \phi(N))$, so without loss of generality, throughout this thesis we will consider $\phi(N) \subseteq N$ for any $N \in S(M)$.

- (2) For functions ϕ , ψ :S(M) \longrightarrow S(M) \cup { \emptyset }, we write $\phi \le \psi$ if $\phi(N) \subseteq \psi(N) \ \forall \ N \in S(M)$.
- (3) Observe that $\phi_{\emptyset} \leq \phi_0 \leq \phi_w \leq ... \leq \phi_{n+1} \leq \phi_n \leq ... \leq \phi_2 \leq \phi_1$.

Proposition 3.4. Let R be a commutative ring and N be a submodule of R-module M. (1)Let $\psi_1, \psi_2 : S(M) \to S(M) \cup \{\emptyset\}$ be functions with $\psi_1 \leq \psi_2$. Then N is ψ_1 -primary implies N is ψ_2 -primary.

(2)Let $\phi: S(M) \to S(M) \cup \{\emptyset\}$ be functions. If N is ϕ -prime then N is ϕ -primary. (3)N is primary \Longrightarrow N is weakly primary \Longrightarrow N is ϕ_w -primary \Longrightarrow N is ϕ_{n+1} -primary \Longrightarrow ϕ_n -primary $(n \ge 2) \Longrightarrow$ N is almost primary.

Proof. (1)Assume that N is ψ_1 -primary. Let $rm \in N - \psi_2(N)$ for $r \in \mathbb{R}$, $m \in M$ then $rm \in N - \psi_1(N)$. Since N is ψ_1 -primary, $r^k \in (\mathbb{N} : \mathbb{M})$ for some $k \in \mathbb{N}$ or $m \in \mathbb{N}$. Hence N is ψ_2 -primary.

- (2) Is trivial and follows immediately from the definition.
- (3) This follows from (1) and the ordering of the ϕ_{α} 's given in Remark 3.3.

Theorem 3.5. Let R be a commutative ring and M be an R-module. Let $\phi: S(M) \to S(M) \cup \{\emptyset\}$ be a function. Let N be a ϕ -primary submodule of M. If $(N:M)N \nsubseteq \phi(N)$ then N is a primary submodule of M.

Proof. Let $a \in R$ and $x \in M$ be such that $ax \in N$. If $ax \notin \phi(N)$, then since N is ϕ -primary, we have $a^k \in (N:M)$ for some $k \in \mathbb{N}$ or $x \in N$. So let $ax \in \phi(N)$. In this case we may assume that $aN \subseteq \phi(N)$, because if $aN \nsubseteq \phi(N)$ then there exists $p \in N$ such that $ap \notin \phi(N)$, so that $a(x+p) \in N - \phi(N)$. Therefore $a \in \sqrt{(N:M)}$ or $x + p \in N$ and hence $a \in \sqrt{(N:M)}$ or $x \in N$. Second we may assume that $(N:M)x \in \phi(N)$. If this is not the case, there exists $u \in (N:M)$ such that $ux \notin \phi(N)$ and so $(a+u)x \in N - \phi(N)$. Since N is a ϕ -primary submodule, we have $a + u \in \sqrt{(N:M)}$ or $x \in N$. So $a \in \sqrt{(N:M)}$ or $x \in N$. Now since $(N:M)N \nsubseteq \phi(N)$, there exist $x \in (N:M)$ and $x \in N$ such that $x \in K$ such t

So $(a + r)(x + p) \in N$ - $\phi(N)$, and hence $a + r \in \sqrt{(N : M)}$ or $x + p \in N$. Therefore $a \in \sqrt{(N : M)}$ or $x \in N$. Thus N is primary submodule.

Corollary 3.6. Let N be a weakly primary submodule of M such that $(N:M)N \neq 0$. Then N is a primary submodule of M.

Proof. In the above theorem, set $\phi = \phi_0$.

Remark 3.7. Suppose that N is a ϕ -primary submodule of M such that $\phi(N) \subseteq (N:M)N$ (resp. $\phi(N) \subseteq (N:M)^2N$) and that N is not a primary submodule. Then by Theorem 3.5, we have $\phi(N) = (N:M)N$ (resp. $\phi(N) = (N:M)^2N$). In particular if N is a weakly primary (resp. ϕ_3 - primary) submodule but not primary submodule then (N:M)N = 0 (resp. $(N:M)N = (N:M)^2N$).

Theorem 3.8. [3] Let $R = R_1 \times R_2$ where each R_i is a commutative ring with identity. Let M_i be R_i -module $\forall i \in \{1,2\}$, and $M = M_1 \times M_2$ be an R-module with $(r_1, r_2)(m_1, m_2) = (r_1m_1, r_2m_2)$, where $r_i \in R_i$, $m_i \in M_i$. Then,

- (1)If N₁ is a primary submodule of M₁, then N₁ × M₂ is a primary submodule of M.
 (2) If N₂ is a primary submodule of M₂, then M₁ × N₂ is a primary submodule of M.
- Remark 3.9. The above theorem is not true for correspondence ϕ primary submodules in general, for example if N_1 is a ϕ_0 -primary submodule of M_1 then $N_1 \times M_2$ is not necessarily a ϕ_0 -primary submodule of $M_1 \times M_2$. Let $R_1 = R_2 = M_1 = M_2 = Z_{14}$, and suppose $N_1 = 0$. Then evidently N_1 is a ϕ_0 -primary submodule of M_1 . However, $(2, 1)(7, 1) \in N_1 \times M_2$, and

Proposition 3.10. Let R_1 and R_2 be two commutative rings, with $R = R_1 \times R_2$, M_1 and M_2 be R_1 and R_2 - modules respectively. Let $M = M_1 \times M_2$ be an R-modules with $(r_1, r_2)(m_1, m_2) = (r_1m_1, r_2m_2)$ where $r_i \in R_i$, $m_i \in M_i$. Let $\phi : S(M) \to S(M) \cup \{\emptyset\}$ be a function. Suppose that N_1 is a weakly primary submodule of M_1 such that $\{0\} \times M_2 \subseteq \phi(N_1 \times M_2)$. Then $N_1 \times M_2$ is a ϕ -primary submodule of $M_1 \times M_2$.

 $(7,1) \notin N_1 \times M_2$. Also $(2,1)^k(2,1) \notin N_1 \times M_2$ for any $k \in \mathbb{N}$, $(2,1)^k \to M \nsubseteq N_1 \times M_2$.

Proof. Let $(r_1, r_2)(x_1, x_2) = (r_1x_1, r_2x_2) \in N_1 \times M_2 - \phi(N_1 \times M_2)$, but $N_1 \times M_2 - \phi(N_1 \times M_2) \subseteq N_1 \times M_2 - \{0\} \times M_2 = (N_1 - \{0\}) \times M_2$. We have $r_1x_1 \in N_1 - \{0\}$ and by the assumption on N_1 we have $r_1^k \in (N_1 :_{R_1} M_1)$ for some positive integer k or $x_1 \in N_1$. This gives that $(r_1, r_2)^k = (r_1^k, r_2^k) \in (N_1 :_{R_1} M_1) \times R_2 = (N_1 \times M_2 :_{R_1 \times R_2} M_1 \times M_2)$ for some positive integer k or $(x_1, x_2) \in N_1 \times M_2$. Therefore $N_1 \times M_2$ is a φ-primary submodule of $M_1 \times M_2$. □

Proposition 3.11. Let R_1 and R_2 be two commutative rings, M_1 and M_2 be R_1 and R_2 -modules respectively. Let $M = M_1 \times M_2$ and $\phi : S(M) \to S(M) \cup \{\emptyset\}$ be a function. such that $\phi_w \leq \phi$. Then for any weakly primary submodule N_1 of M_1 , $N_1 \times M_2$ is a ϕ - primary submodule of $M_1 \times M_2$.

Proof. If N_1 is a primary submodule of M_1 , then $N_1 \times M_2$ is primary submodule of M, (see Theorem 3.8), and so a ϕ - primary submodule of $M_1 \times M_2$. Suppose that N_1 is not a primary submodule of M_1 . Then by Remark 3.7, we have $(N_1 :_{R_1} M_1)N_1 = \{0\}$. This gives that $(N_1 \times M_2 :_{R_1 \times R_2} M_1 \times M_2)^i (N_1 \times M_2) = [(N_1 :_{R_1} M_1)^i N_1] \times M_2 = \{0\} \times M_2$, for all $i \geq 1$ and hence we have $\{0\} \times M_2 = \bigcap_{i=1}^{\infty} (N_1 \times M_2 :_{R_1 \times R_2} M_1 \times M_2)^i (N_1 \times M_2) = \phi_w(N_1 \times M_2) \subseteq \phi(N_1 \times M_2)$, and by Proposition 3.10, we have $N_1 \times M_2$ is a ϕ -primary submodule of $M_1 \times M_2$.

Theorem 3.12. Let $R = R_1 \times R_2$ such that each R_i is a commutative ring with identity. Let M_i be R_i -module $\forall i \in \{1,2\}$, and $M = M_1 \times M_2$ with $(r_1, r_2)(m_1, m_2) = (r_1m_1, r_2m_2)$, be an R-module, where $r_i \in R_i$, $m_i \in M_i$ $\forall i \in \{1,2\}$, and let $\psi_i : S(M) \to S(M) \cup \{\emptyset\}$ be a functions, $\phi = \psi_1 \times \psi_2$. Then each of the following types are ϕ -primary submodules of $M_1 \times M_2$,

- (i) $N_1 \times N_2$ where N_i is a proper submodule of M_i , with $\psi_i(N_i) = N_i$.
- (ii) $P_1 \times M_2$ where P_1 is a primary submodule of M_1 .

- (iii) $P_1 \times M_2$ where P_1 is a ψ_1 -primary submodule of M_1 and $\psi_2(M_2) = M_2$.
- (iv) $M_1 \times P_2$ where P_2 is a primary submodule of M_2 .
- (v) $M_1 \times P_2$ where P_2 is a ψ_2 -primary submodule of M_2 and $\psi_1(M_1) = M_1$.

Proof. (i) is clear, since $N_1 \times N_2$ - $\phi(N_1 \times N_2) = \emptyset$

- (ii) If P_1 is a primary submodule of M_1 , then by Theorem 3.8, $P_1 \times M_2$ a primary submodule of $M_1 \times M_2$, and thus $P_1 \times M_2$ is ϕ -primary submodule of M.
- (iii) Let P_1 be a ψ_1 -primary submodule of M_1 and $\psi_2(M_2) = M_2$. Let $(r_1, r_2) \in R$ and $(x_1, x_2) \in M$ be such that $(r_1, r_2)(x_1, x_2) = (r_1x_1, r_2x_2) \in P_1 \times M_2 \phi(P_1 \times M_2) = P_1 \times M_2 \psi_1(P_1) \times \psi_2(M_2) = P_1 \times M_2 \psi_1(P_1) \times M_2 = (P_1 \psi_1(P_1)) \times M_2$. So $r_1x_1 \in P_1 \psi_1(P_1)$ but P_1 is ψ_1 primary submodule, so $r_1^k \in (P_1 :_{R_1} M_1)$ for some $k \in \mathbb{N}$ or $x_1 \in P_1$. Therefore $(r_1, r_2)^k \in (P_1 :_{R_1} M_1) \times R_2 = (P_1 \times M_2 :_{R_1 \times R_2} M_1 \times M_2)$ or $(x_1, x_2) \in P_1 \times M_2$. So $P_1 \times M_2$ is a ϕ -primary submodule of $M_1 \times M_2$.

Parts (iv), (v) are proved similar to (ii), (iii) respectively.

Theorem 3.13. Let N be a proper submodule of M and let $\phi: S(M) \to S(M) \cup \{\emptyset\}$ be a function. Then the following are equivalent:

- (i) N is ϕ primary submodule of M.
- (ii) For $r \in R \sqrt{(N:M)}$, $(N:(r)) = N \cup (\phi(N):(r))$.
- (iii) For $r \in R \sqrt{(N:M)}$, (N:(r)) = N or $(N:(r)) = (\phi(N):(r))$.

Proof. (i) \Longrightarrow (ii) Suppose that N is ϕ - primary such that $r \notin \sqrt{(N:M)}$. Let $m \in (N:(r))$. So $rm \in N$. If $rm \notin \phi(N)$, then N is ϕ - primary implies $m \in N$, and if $rm \in \phi(N)$, then $m \in (\phi(N):(r))$. Hence $(N:(r)) \subseteq N \cup (\phi(N):(r))$. The other inclusion hold trivially, since $\phi(N) \subseteq N$.

- (ii) \Longrightarrow (iii) It is clear because (N : (r)) is an ideal of R.
- (iii) \Longrightarrow (i) Let $r \in R$, $m \in M$ such that $rm \in N \phi(N)$. If $r \notin \sqrt{(N:M)}$, then by assumption, either (N:(r)) = N or $(N:(r)) = (\phi(N):(r))$. As $rm \notin \phi(N)$, then $m \notin (\phi(N):(r))$ and as $rm \in N$, then $m \in (N:(r))$. Hence (N:(r)) = N, and so $m \in N$ as required.

Theorem 3.14. Let M be an R-module and let N be a proper submodule of M. If for any ideal I of R and submodule K of M with $IK \subseteq N$ and $IK \nsubseteq \phi(N)$, we have $I \subseteq \sqrt{(N:M)}$ or $K \subseteq N$, then N is ϕ - primary submodule of M.

Proof. Suppose that $rm \in N$ - $\phi(N)$ for $r \in R$ and $m \in N$. Then $(r)(m) = (rm) \subseteq N - \phi(N)$. By the assumption, either $(m) \subseteq N$ or $(r) \subseteq \sqrt{(N:M)}$. Therefore, $m \in N$ or $r \in \sqrt{(N:M)}$ and N is ϕ -primary submodule of M.

Proposition 3.15. Let N be a submodule of M with $(N:M) = \sqrt{(N:M)}$, then N is ϕ -primary if and only if N is ϕ -prime.

Proof. Trivial from the definitions of ϕ -prime and ϕ -primary submodules.

Theorem 3.16. Let M be an R-module and let $\phi: S(M) \longrightarrow S(M) \cup \{\emptyset\}$. Let P be a ϕ -primary submodule of M.

- (i) If $L \subseteq P$ is a submodule of M, then P/L is a ϕ_L -primary submodule of M/L.
- (ii) Suppose that S is a multiplicatively closed subset of R such that $S^{-1}P \neq S^{-1}M$ and $S^{-1}(\phi(P)) \subseteq (S^{-1}\phi)(S^{-1}P)$ and $(P:M) \cap S = \emptyset$. Then $S^{-1}P$ is an $(S^{-1}\phi)$ -primary submodule of $S^{-1}M$.

Proof. (i) Let $a \in \mathbb{R}$ and $\bar{x} \in \mathbb{M}/\mathbb{L}$ with a $\bar{x} \in \mathbb{P}/\mathbb{L}$ - $\phi_L(P/L)$, where $\bar{x} = x + L$, for some $x \in \mathbb{M}$. By the definition of ϕ_L , this gives that $ax \in \mathbb{P}$ - $\phi(P)$, which gives that $a^k \in (P:M)$ for some $k \in \mathbb{N}$ or $x \in \mathbb{P}$. Therefor $a^k \in (P/L:M/L)$ for some $k \in \mathbb{N}$ or $\overline{x} \in \mathbb{P}/\mathbb{L}$ and so \mathbb{P}/\mathbb{L} is ϕ_L -primary submodule.

(ii) Let $a/s \in S^{-1}R$ and $x/t \in S^{-1}M$ with $ax/st \in S^{-1}P$ - $(S^{-1}\phi)(S^{-1}P)$. Then by our assumption $ax/st \in S^{-1}P$ - $S^{-1}(\phi(P))$. Therefore there exists $u \in S$ such that $uax \in P$ -

 $\phi(P)$, (note that for each $v \in S$, $vax \notin \phi(P)$). Since P is ϕ - primary and $(P:M) \cap S = \emptyset$, we have $(ua)^k \in (P:M)$ for some $k \in \mathbb{N}$ or $x \in P$. Therefore $(a/s)^k \in S^{-1}((P:_R M)) \subseteq (S^{-1}P:_{S^{-1}R}S^{-1}M)$ for some $k \in \mathbb{N}$ (because $(P:M) \subseteq (S^{-1}P:_{S^{-1}M})$) or $x/t \in S^{-1}P$. Hence $S^{-1}P$ is an $(S^{-1}\phi)$ -primary submodule of $S^{-1}M$.

4 ϕ - Primal Submodules

The concept of ϕ - primal ideals in a commutative ring was introduced by A.Y. Darani in [8]. Let R be a commutative ring with identity. Let $\phi: \mathbb{J}(R) \to \mathbb{J}(R) \cup \{\emptyset\}$ be a function where $\mathbb{J}(R)$ denotes the set of all ideals of R. Let I be an ideal of R. An element $a \in R$ is called ϕ - prime to I if $ra \in I - \phi(I)$ (with $r \in R$) implies that $r \in I$. We denote by $S_{\phi}(I)$ the set of all elements of R that are not ϕ - prime to I. I is called a ϕ - primal ideal of R if the set $P = S_{\phi}(I) \cup \phi(I)$ forms an ideal of R. In this case P is called the ϕ - prime adjoint ideal (simply adjoint ideal) of I, and I is called a P- ϕ -primal ideal of R.

Now we generalize the concept of ϕ -primal ideals to ϕ - primal submodules. Let M be R-module, let S(M) be the set of all submodule of M and $\phi: S(M) \to S(M) \cup \{\emptyset\}$ be a function.

Definition 4.1. Let N be a submodule of R-module M and $\phi : S(M) \to S(M) \cup \{\emptyset\}$ be a function. An element $r \in R$ is called ϕ -prime to N if $rm \in N$ - $\phi(N)$ (with $m \in M$) implies that $m \in N$. Otherwise r is not ϕ -prime to N.

Remarks 4.2. Let N be a submodule of R-module M. Denote by $S_{\emptyset}(N)$ the set of all elements of R that are not ϕ - prime to N, then

- (1) If an element of R is prime to N then it is ϕ prime to N, so $S_{\emptyset}(N) \subseteq adj(N) = S(N)$. (2) The converse of (1) is not necessarily true in general. For example consider the \mathbb{Z} -module $M = \mathbb{Z}/24\mathbb{Z}$, its submodule $N = 8\mathbb{Z}/24\mathbb{Z}$ and assume that $\phi = \phi_0$ where $\phi_0(N) = 0$. Denote each coset $a + 24\mathbb{Z}$ in M by \overline{a} . Then, as $6.\overline{12} = \overline{0} \in \mathbb{N}$ and $\overline{12} \in \mathbb{M}$ - N, so 6 is not prime to N. But if $6.\overline{a} \in \mathbb{N}$ for some $\overline{a} \in \mathbb{M}$, then 4 divides a. Hence $6.\overline{a} = \overline{0}$. This implies that 6 is ϕ_0 -prime to N. Thus, we have $adj(N) \not\subseteq S_{\emptyset}(\mathbb{N})$.
- **Definition 4.3.** Let R be a commutative ring and let $\phi : S(M) \to S(M) \cup \{\emptyset\}$ be a function. A proper submodule N of M is said to be a ϕ -primal if the set $P = S_{\phi}(N) \cup \phi(N)$ forms an ideal of R.

Example 4.4. Let R be a commutative ring. Let M be an R-module. Let S(M) be the set of all submodules of M. Define the following type of the functions $\phi_{\alpha}: S(M) \longrightarrow S(M) \cup \{\emptyset\}$ and the corresponding ϕ_{α} - primal submodules as follows:

- 1) ϕ_{\emptyset} : $\phi_{\emptyset}(N) = \emptyset$, $\forall N \in S(M)$, defines primal submodules.
- 2) $\phi_0: \phi_0(N) = \{0\}, \forall N \in S(M), \text{ then defines weakly primal submodules.}$
- 3) $\phi_1:\phi_1(N)=N, \forall N\in S(M), defines any submodule N.$
- 4) $\phi_2: \phi_2(N) = (N:M)N, \forall N \in S(M), defines almost primal submodules.$
- 5) $\phi_w:\phi_w(N)=\bigcap_{i=1}^{\infty}(N:M)^iN, \ \forall \ N\in S(M), \ defines \ \phi_w$ -primal submodule.
- 6) $\phi_n: \phi_n(N) = (N:M)^{n-1}N, \forall n \geq 2, \forall N \in S(M), defines n-almost primal submodules.$

Theorem 4.5. Let P be an ideal of a commutative ring R. Let N be a proper submodule of R-module M. Let $\phi: S(M) \to S(M) \cup \{\emptyset\}$ be a function. Then the following are equivalent: (1) N is P- ϕ -primal submodule.

- (2) For every $x \notin P \phi(N)$, $(N : x) = N \cup (\phi(N) : x)$ and for $x \in P \phi(N)$,
- $(N:x) \supseteq N \bigcup (\phi(N):x).$
- (3) For every $x \notin P$ $\phi(N)$, (N:x) = N or $(N:x) = (\phi(N):x)$ and for $x \in P$ $\phi(N)$, $(N:x) \supseteq N$ and $(N:x) \supseteq (\phi(N):x)$.

Proof. $(1 \to 2)$ Assume that N is P- ϕ -primal submodule then P - $\phi(N)$ consists entirely of elements of R that are not ϕ - prime to N. Let $x \notin P$ - $\phi(N)$ then x is ϕ -prime to N. Clearly $N \cup (\phi(N) : x) \subseteq (N : x)$. On the other hand, for every $m \in (N : x)$, if $mx \in \phi(N)$ then m

- $\in (\phi(N):x)$ and if $\max \not\in \phi(N)$ then x is ϕ prime to N gives $m \in N$. Hence $m \in N \bigcup (\phi(N):x)$, that is $(N:x) \subseteq N \bigcup (\phi(N):x)$. Therefor $(N:x) = N \bigcup (\phi(N):x)$. Now assume that $x \in P \phi(N)$ then x is not ϕ prime to N, so $\exists m \in M$ N such that $\max \in N \phi(N)$. Hence $m \in (N:x) (N \bigcup (\phi(N):x))$. Thus $(N:x) \supseteq N \bigcup (\phi(N):x)$ $(2 \to 3)$ It is clear because (N:x) is an ideal in R.
- $(3 \to 1)$ We want to prove that P- $\phi(N)$ consists exactly of all elements of R that are not ϕ -prime to N. Hence N is P- ϕ -primal.

Let $x \notin P-\phi(N)$, then $(N:x) = N \cup (\phi(N):x)$. We want to prove that $x \notin S_{\phi}(N)$. Let $xm \in N - \phi(N)$ with $m \in M$. So, $m \in (N:x)$. By assumption, either (N:x) = N or $(N:x) = (\phi(N):x)$. As $xm \in N-\phi(N)$, so $m \notin (\phi(N):x)$. Thus, $m \in N$ and hence, $x \notin S_{\phi}(N)$. Conversely, let $x \in P - \phi(N)$, then $(N:x) \supseteq N \cup (\phi(N):x)$, so, $\exists m \in (N:x)$ such that $m \notin (N \cup (\phi(N):x))$. Therefore, $m \notin N$ and $m \notin (\phi(N):x)$. Thus $xm \in N-\phi(N)$ with $m \notin N$, so x is not ϕ -prime to N and hence $x \in S_{\phi}(N)$. Hence N is $P-\phi$ -primal submodule. \square

Proposition 4.6. Let R be a commutative ring and M be R-module. Let $\phi: S(M) \to S(M) \cup \{\emptyset\}$ be a function. If N is ϕ -primal submodule of M then $P = S_{\emptyset}(N) \cup \phi(N)$ is ϕ -prime ideal of R.

Proof. Suppose that r,s \notin P, we show that either rs ∈ $\phi(P)$ or rs \notin P. Assume that rs \notin $\phi(P)$. Let rsm ∈ N - $\phi(N)$ for some m ∈ M. Then, by Theorem 4.5 gives that rm ∈ (N : s)= N \bigcup ($\phi(N)$: s) where rm \notin ($\phi(N)$: s); hence rm ∈ N which implies that rm ∈ N - $\phi(N)$. Thus m ∈ (N : r) = N \bigcup ($\phi(N)$: r), and so m ∈ N. Therefore, rs is ϕ -prime to N and rs \notin P as required.

Notation 4.7. Let N be a ϕ -primal submodule of R-module M. By Proposition 4.6, P = $S_{\emptyset}(N) \cup \phi(N)$ is ϕ -prime ideal of R. In this case P is called the ϕ -prime adjoint ideal and N is called a P- ϕ -primal submodule of M.

The concepts "primal submodule" and " ϕ -primal submodule" are different. In fact, neither implies the other. We will show this by the following examples, in Example 4.8 below we give a primal submodule that is not ϕ - primal. An example of ϕ - primal submodule which is not primal is given in Example 4.9.

- **Example 4.8.** [5],[8] Consider the submodule $N = 8\mathbb{Z}/24\mathbb{Z}$ of \mathbb{Z} -module $M = \mathbb{Z}/24\mathbb{Z}$. Denote each coset $a + 24\mathbb{Z}$ in M by \overline{a} . Let $\phi = \phi_0$ (weakly primal).
- (1) since $0 \neq 2.\overline{4} \in N$ and $0 \neq 4.\overline{2} \in N$ with $\overline{2}$, $\overline{4} \in M$ -N we have $2,4 \in S_{\phi_0}(N)$. If $6.\overline{a} \in N$ for some $\overline{a} \in M$ then 4 divides a and hence $6.\overline{a} = 0$. This shows that 2+4 = 6 is ϕ_0 prime to N so $6 \notin S_{\phi_0}(N)$. Therefor $S_{\phi}(N) \cup \phi(N)$ is not an ideal of \mathbb{Z} , that is N is not ϕ -primal submodule of M.
- (2) Now set $P = 2\mathbb{Z}/24\mathbb{Z}$ then every element of P is not prime to N. Assume that $\overline{a} \notin P$, if $\overline{a}.\overline{n} \in N$ for some $\overline{n} \in M$ then 8 divides n, that is $\overline{n} \in N$. Hence \overline{a} is prime to N so $\overline{a} \notin S(N) = adj(N)$. So we have S(N) = P, that is N is P-primal submodule. This example show that a primal submodule need not necessarily be ϕ -primal.
- **Example 4.9.** [5] Consider the \mathbb{Z} -module $M = \mathbb{Z}_6$ and denote every integer a modulo 6 by \overline{a} . Consider the submodule $N = \{0\}$ of M and let $\phi = \phi_0$ then:
- (1) 0 is weakly prime to N so $S_{\phi_0}(N) = \emptyset$. Thus N is weakly primal submodule of M.
- (2) Since $2.\overline{3} = \overline{0} \in N$ and $3.\overline{2} = \overline{0} \in N$, so $2,3 \in S_{\emptyset}(N)$ while 3-2 = 1 is prime to N, so we have $1 \notin S(N)$. Therefore N is not a primal submodule of M.

This example shows that ϕ -primal submodule need not necessarily be primal.

Theorem 4.10. Let M be R-module and $\phi: S(M) \to S(M) \cup \{\emptyset\}$ be a function. Let N and L be submodules of M with $L \subseteq \phi(N)$ then N is a ϕ -primal submodule of M iff N/L is a ϕ_L -primal submodule of M/L.

Proof. Assume N is P- ϕ -primal submodule. Suppose that a+L is an element of M/L that is not ϕ_L - prime to N/L, so there exists $b \in M$ - N with $(a+L)(b+L) \in N/L$ - $\phi_L(N/L)$.

In this case $ab \in N - \phi(N)$ with $b \in M - N$ implies that a is not ϕ - prime to N. Hence $a \in S_{\phi}(N) \subseteq P$ and so $a + L \in P/L$. Now assume that $c + L \in P/L$ then $c \in P = S_{\phi}(N) \cup \phi(N)$. If $c \in \phi(N)$ then $c + L \in \phi_L(N/L)$, so assume that $c \in S_{\phi}(N)$, that is c is not ϕ - prime to N then $cd \in N - \phi(N)$ for some $d \in M - N$. Consequently, $(c + L)(d + L) \in N/L - (\phi(N)/L) = N/L - \phi_L(N/L)$ with $d + L \in M/L - N/L$. This implies that c + L is not ϕ_L - prime to N/L, so $c + L \in S_{\phi_L}(N/L)$. We have already shown that $P/L = S_{\phi_L}(N/L) \cup \phi_L(N/L)$. Therefore N/L is ϕ_L - primal.

Conversely, suppose that N/L is ϕ_L - primal in M/L with the adjoint ideal P/L. For every a \in P - ϕ (N) we have a + L \in P/L - ϕ_L (N/L) = S_{ϕ_L} (N/L), so a + L is not ϕ_L -prime to N/L, thus (a + L)(b + L) \in N/L - ϕ_L (N/L) for some b + L \in M/L - N/L. In this case b \in M - N and ab \in N - ϕ (N) implies that a is not ϕ -prime to N. On the other hand, assume that c \in R is not ϕ -prime to N then cd \in N - ϕ (N) for some d \in M - N so we have (c + L)(d + L) \in N/L - ϕ_L (N/L) with d + L \notin N/L, that is c + L is not ϕ_L -prime to N/L. Hence c + L \in P/L - ϕ_L (N/L), so we have c \in P - ϕ (N). It follows that P = S_{ϕ} (N) \bigcup ϕ (N) which implies that N is P- ϕ -primal submodule of M.

Remark 4.11. [5] Let R be a commutative ring, M an R-module and S a multiplicatively closed set in R. If K is a submodule of $S^{-1}M$, define $K \cap M = v^{-1}(K) = \{m \in M : m/1 \in K\}$, where $v : M \to S^{-1}M$ is the natural mapping $m \mapsto m/1$. Clearly, $K \cap M$ is a submodule of M.

Proposition 4.12. Let R be a commutative ring and S a multiplicatively closed subset of R. Let $\phi: S(M) \longrightarrow S(M) \cup \{\emptyset\}$ be a function. Let N be a P- ϕ -primal submodule of an R-module M with $P \cap S = \emptyset$.

- (1) Let $\lambda = a/s \in S^{-1}N$ $S^{-1}(\phi(N))$ (with $a \in M$, $s \in S$), then $a \in N$.
- (2) If $S^{-1}(\phi(N)) \neq S^{-1}N$ then $N = S^{-1}N \cap M$.

Proof. (1) Assume that $\lambda = a/s \in S^{-1}N$ - $S^{-1}(\phi(N))$ then a/s = b/t for some $b \in N$, $t \in S$. In this case, since $u \in S$ and $b \in N$, then $uta = usb \in N$ for some $u \in S$. If $uta \in \phi(N)$ then $a/s = uta/uts \in S^{-1}(\phi(N))$ which is a contradiction, so we have $uta \in N$ - $\phi(N)$. If a $\notin N$ then ut is not ϕ -prime to N, so $ut \in P \cap S$ which contradicts the hypothesis. Therefore $a \in N$.

(2) Let $m \in S^{-1}N \cap M$ then $m/1 \in S^{-1}N$, so $\exists s \in S$ such that $sm \in N$. If $sm \notin \phi(N)$ and $m \notin N$ then s is not ϕ -prime to N, so $s \in P \cap S$, which a contradiction. Thus $m \in N$. If $sm \in \phi(N)$ then $m/1 = sm/s \in S^{-1}(\phi(N))$ which implies that $m \in S^{-1}(\phi(N)) \cap M$. Therefore $(S^{-1}N \cap M) = N \cup (S^{-1}(\phi(N) \cap M), so (S^{-1}N \cap M) = N \text{ or } (S^{-1}N \cap M) = ((S^{-1}\phi(N)) \cap M)$. But $S^{-1}N \in S^{-1}(\phi(N))$, so $S^{-1}N \cap M \neq S^{-1}(\phi(N)) \cap M$. Thus $S^{-1}N \cap M = N$.

5 ϕ -2-Absorbing Submodules

In this section, we introduce the concept of ϕ -2-absorbing submodules which is a generalization to concept of 2-absorbing submodules. Let R be a commutative ring with identity and M be a unitary R-module. Let S(M) be the set of all submodules of M, and $\phi : S(M) \to S(M) \cup \{\emptyset\}$ be a function.

Definition 5.1. A proper submodule N of M is called ϕ -2-absorbing submodule if r,s \in R, m \in M with rsm \in N - $\phi(N)$ implies that rs \in (N : M) or rm \in N or sm \in N.

Example 5.2. Let R be a commutative ring. Let M be an R-module. Let S(M) be the set of all submodules of M. Define the following type of the functions $\phi_{\alpha}: S(M) \longrightarrow S(M) \cup \{\emptyset\}$ and the corresponding ϕ_{α} - primal submodules as follows:

- 1) ϕ_{\emptyset} : $\phi_{\emptyset}(N) = \emptyset$, $\forall N \in S(M)$, defines 2-absorbing submodules.
- 2) $\phi_0: \phi_0(N) = \{0\}, \forall N \in S(M), \text{ then defines weakly 2-absorbing submodules.}$
- 3) $\phi_1:\phi_1(N)=N, \forall N\in S(M), defines any submodule N.$

- 4) $\phi_2: \phi_2(N) = (N:M)N, \forall N \in S(M), defines almost 2-absorbing submodules.$
- 5) $\phi_w:\phi_w(N)=\bigcap_{i=1}^\infty(N:M)^iN, \ \forall \ N\in S(M), \ defines \ \phi_w$ -2-absorbing submodule.
- 6) $\phi_n: \phi_n(N) = (N:M)^{n-1}N, \forall n \geq 2, \forall N \in S(M), defines n-almost 2-absorbing submodules.$

Remarks 5.3. (1) every 2-absorbing submodule is ϕ -2-absorbing submodule but the converse need not be true in general. For example, let $M = \mathbb{Z}_8$ be a \mathbb{Z} module and let $N = \{0\}$. N is ϕ_0 (weakly)-2-absorbing submodule but not 2-absorbing submodule because $2.2.2 = 0 \in N$ and $4 \notin N$ and $4 \notin (N : M) = \{8n : n \in \mathbb{Z}\}$.

(2) Observe that $\phi_{\emptyset} \leq \phi_0 \leq \phi_w \leq ... \leq \phi_{n+1} \leq \phi_n \leq ... \leq \phi_2 \leq \phi_1$.

Proposition 5.4. Let R be a commutative ring and N be a submodule of R - module M. (1) Let $\psi_1, \psi_2 : S(M) \longrightarrow S(M) \cup \{\emptyset\}$ be functions with $\psi_1 \leq \psi_2$. Then N is ψ_1 -2-absorbing submodule implies N is ψ_2 -2-absorbing.

(2) N is 2-absorbing \implies N is weakly 2-absorbing \implies N is ϕ_w - 2-absorbing \implies N is ϕ_{n+1} -2-absorbing $\implies \phi_n$ -2-absorbing ($n \ge 2$) \implies N is ϕ_2 -2-absorbing.

Proof. (1) Assume that N is ϕ_1 -2-absorbing submodule of M. Let $rsm \in N - \phi_2(N)$ for r,s $\in \mathbb{R}$, $m \in M$ then $rsm \in N - \phi_1(N)$. Since N is ϕ_1 -2-absorbing, $rs \in (\mathbb{N} : M)$ or $rm \in \mathbb{N}$ or $rsm \in \mathbb{N}$. Hence N is ϕ_2 -2-absorbing submodule of M.

(2) This follows from (1) and the ordering of the $\phi_{\alpha}\prime$ s given in Example 5.2 and Remarks 5.3.

Theorem 5.5. Let $\phi: S(M) \to S(M) \cup \{\emptyset\}$ be function. Let N be a ϕ -2-absorbing submodule of M. If $(N:M)N \nsubseteq \phi(N)$, then N is a 2-absorbing submodule of M.

Proof. Let $r,s \in R$ and $m \in M$ be such that $rsm \in N$. If $rsm \notin \phi(N)$ and since N is ϕ -2-absorbing then we have $rs \in (N:_R M)$ or $rm \in N$ or $sm \in N$. So let $rsm \in \phi(N)$. In this case we may assume that $rsN \subseteq \phi(N)$. Because if $rsN \nsubseteq \phi(N)$, then there exists $p \in N$ such that $rsp \notin \phi(N)$, so that $rs(m+p) \in N - \phi(N)$. Therefore $rs \in (N:M)$ or $r(m+p) \in N$ or $s(m+p) \in N$ and hence $rs \in (N:M)$ or $rm \in N$ or $sm \in N$. Second we may assume that $(N:M)m \in \phi(N)$. If this is not the case, there exists $u \in (N:M)$ such that $um \notin \phi(N)$ and so $(r+u)sm \in N - \phi(N)$. Since N is a ϕ -2-absorbing submodule, we have $(r+u)s \in (N:M)$ or $(r+u)m \in N$ or $sm \in N$. Thus $rs \in (N:M)$ or $rm \in N$ or $sm \in N$. Now since $(N:_R M)N \nsubseteq \phi(N)$, there exist $v \in (N:M)$ and $p \in N$ such that $vp \notin \phi(N)$. So $(r+v)s(m+p) \in N - \phi(N)$, and hence $(r+v)s \in (N:M)$ or $(r+v)(m+p) \in N$ or $s(m+p) \in N$. Therefore $rs \in (N:M)$ or $rm \in N$ or $sm \in N$. Thus N is 2-absorbing submodule. □

Corollary 5.6. Let N be a weakly 2-absorbing submodule of M such that $(N :_R M)N \neq 0$. Then N is a 2-absorbing submodule of M.

Proof. In the above Theorem set $\phi = \phi_0$.

Remark 5.7. Suppose that N is a ϕ -2-absorbing submodule of M such that $\phi(N) \subseteq (N : M)N$ and N is not 2-absorbing submodule then by Theorem 5.5, we have $\phi(N) = (N : M)N$. In particular if N is weakly 2-absorbing submodule but not 2-absorbing then (N : M)N = 0.

Theorem 5.8. [13] Let $R = R_1 \times R_2$ such that each R_i is a commutative ring with identity. Let M_i be R_i -module $\forall i \in \{1,2\}$ and $M = M_1 \times M_2$ be an R-module with $(r_1, r_2)(m_1, m_2) = (r_1m_1, r_2m_2)$, where $r_i \in R_i$, $m_i \in M_i$ $\forall i \in \{1,2\}$. Then we have:

- (1) If N_1 is a 2-absorbing submodule of M_1 , then $N_1 \times M_2$ is a 2-absorbing submodule of M.
- (2) If N_2 is a 2-absorbing submodule of M_2 , then $M_1 \times N_2$ is a 2-absorbing submodule of M.

Proof. Because the proof of (1) and (2) are similar, So we only prove (1). Hence suppose that N_1 is a 2-absorbing submodule of M_1 and let $r_1, s_1 \in R_1, r_2, s_2 \in R_2, m_1 \in M_1$ and m_2

 $\in M_2 \text{ such that } (r_1,r_2)(s_1,s_2)(m_1,m_2) = (r_1s_1m_1,r_2s_2m_2) \in N_1 \times M_2. \text{ then } r_1s_1m_1 \in N_1.$ Since N_1 is 2-absorbing submodule of M_1 , So $r_1s_1 \in (N_1:M_1)$ or $r_1m_1 \in N_1$ or $s_1m_1 \in N_1$. So $(r_1,r_2)(s_1,s_2) = (r_1s_1,r_2s_2) \in (N_1:M_1) \times (M_2:M_2) = (N_1 \times M_2:M_1 \times M_2)$ or $(r_1,r_2)(m_1,m_2) \in N_1 \times M_2$ or $(s_1,s_2)(m_1,m_2) \in N_1 \times M_2$. Hence $N_1 \times M_2$ is 2-absorbing submodule of M.

Example 5.9. The above theorem is not true for correspondence ϕ - 2-absorbing submodules in general, for example if N_1 is a ϕ_0 -2-absorbing submodule of M_1 then $N_1 \times M_2$ is not necessarily a ϕ_0 - 2-absorbing submodule of $M_1 \times M_2$. Let $R_1 = R_2 = M_1 = M_2 = \mathbb{Z}_8$ and suppose that $N_1 = \{0\}$ then evidently N_1 is a ϕ_0 -2-absorbing submodule of M_1 . However, $0 \neq (2,1)(2,1)(2,1) \in N_1 \times M_2$ and $(2,1)(2,1) = (4,1) \notin (N_1 \times M_2 : M_1 \times M_2)$ and $(2,1)(2,1) \notin N_1 \times M_2$. Thus $N_1 \times M_2$ is not ϕ_0 -absorbing submodule of M.

Proposition 5.10. Let R_1 and R_2 be two commutative rings, M_1 and M_2 be R_1 and R_2 -modules respectively. Let $M = M_1 \times M_2$ and define $\phi : S(M) \longrightarrow S(M) \cup \{\emptyset\}$ be a function. Suppose that N_1 is a weakly 2-absorbing submodule of M_1 such that $\{0\} \times M_2 \subseteq \phi(N_1 \times M_2)$. Then $N_1 \times M_2$ is a ϕ -2-absorbing submodule of $M_1 \times M_2$.

Proof. Let $r_1, s_1 \in R_1, \ r_2, s_2 \in R_2, \ x_1 \in M_1 \ \text{and} \ x_2 \in M_2$. Let $(r_1, r_2)(s_1, s_2)(x_1, x_2) = (r_1s_1x_1, r_2s_2x_2) \in N_1 \times M_2 - \phi(N_1 \times M_2)$. Since $N_1 \times M_2 - \phi(N_1 \times M_2) \subseteq N_1 \times M_2 - \{0\} \times M_2 = (N_1 - \{0\}) \times M_2$, so we have $r_1s_1x_1 \in N_1 - \{0\}$ and by the assumption on N_1 we have $r_1s_1 \in (N_1 :_{R_1} M_1)$ or $r_1x_1 \in N_1$ or $s_1x_1 \in N_1$. If $r_1s_1 \in (N_1 :_{R_1} M_1)$ then $(r_1, r_2)(s_1, s_2) = (r_1s_1, r_2s_2) \in (N_1 :_{R_1} M_1) \times R_2 = (N_1 \times M_2 :_{R_1 \times R_2} M_1 \times M_2)$. If $r_1x_2 \in N_1$ then $(r_1, r_2)(x_1, x_2) = (r_1x_1, r_2x_2) \in N_1 \times M_2$. If $s_1x_1 \in N_1$ then $(s_1, s_2)(x_1, s_2) = (s_1x_1, s_2x_2) \in N_1 \times M_2$. Therefore $N_1 \times M_2$ is ϕ -2-absorbing submodule of M.

In the next theorem we give characterizations of ϕ -2-absorbing submodules.

Theorem 5.11. Let N be a proper submodule of M and let $\phi : S(M) \to S(M) \cup \{\emptyset\}$ be a function. Then the following are equivalent:

- (i) N is a ϕ -2-absorbing submodule of M;
- (ii) for any $r,s \in R$, with $rs \notin (N:M)$, we have $(N:rs) = (N:r) \cup (N:s) \cup (\phi(N):rs)$; (iii) for any $r,s \in R$, with $rs \notin (N:M)$, we have, (N:rs) = (N:r) or $(N:rs) = (\phi(N):s)$ or $(N:rs) = (\phi(N):rs)$.

Proof. (i) \Longrightarrow (ii) Let $m \in (N : rs)$ then $rsm \in N$. If $rsm \notin \phi(N)$ then N is a ϕ -2-absorbing submodule of M implies $rm \in N$ or $sm \in N$, that is $m \in (N : r)$ or $m \in (N : s)$. If $rsm \in \phi(N)$ then $m \in (\phi(N) : rs)$. As we may assume that $\phi(N) \subseteq N$, the other inclusion always hold.

- (ii) \longrightarrow (iii) If an ideal is the union of two ideals, it is equal to one of them.
- (iii) \Longrightarrow (i) Let rsm \in N ϕ (N) with rs \notin (N : M) then m \in (N : rs) and m \notin (ϕ (N) :rs), so m \in (N : r) or m \in (N : s) that is, rm \in N or sm \in N.

Theorem 5.12. Let M be an R-module and let $\phi: S(M) \to S(M) \cup \{\emptyset\}$ be a function. Let N be a ϕ -2-absorbing submodule of M.

- (i) If $L \subseteq N$ is a submodule of M, then N/L is a ϕ_L -2-absorbing submodule of M/L.
- (ii) Suppose that S is a multiplicatively closed subset of R such that $S^{-1}N \neq S^{-1}M$ and $S^{-1}(\phi(N)) \subseteq (S^{-1}\phi)(S^{-1}N)$ with $(N:_R M) \cap S = \emptyset$. Let $S^{-1}\phi : S(S^{-1}M) \longrightarrow S(S^{-1}M) \cup \{\emptyset\}$. Then $S^{-1}N$ is an $(S^{-1}\phi)$ -2-absorbing submodule of $S^{-1}M$.
- *Proof.* (i) Let $r,s \in \mathbb{R}$ and $\bar{x} \in M/L$ with $rs\bar{x} \in N/L \phi_L(N/L)$, where $\bar{x} = x + L$, for some $x \in M$. By the definition of ϕ_L , this gives that $rsx \in N (\phi(N) + L)$. So we have $rsx \in N \phi(N)$, which gives that $rs \in (N : M)$ or $rx \in N$ or $rx \in N/L$ or $rx \in N/L$ or $rx \in N/L$ and so N/L is $\phi_L 2$ -absorbing submodule.
- (ii) Let a/s, b/w $\in S^{-1}R$ and x/t $\in S^{-1}M$ with abx/swt $\in S^{-1}N$ $(S^{-1}\phi)(S^{-1}N)$. Then by our assumption abx/swt $\in S^{-1}N$ $S^{-1}(\phi(N))$. Therefore there exists $u \in S$ such that

uabx \in N - $\phi(N)$, (note that for each v \in S, vabx $\notin \phi(N)$). Since N is ϕ -2-absorbing submodule and $(N:M) \cap S = \emptyset$, we have uab \in (N : M) or ax \in N or bx \in N. Therefore ab/sw \in S⁻¹(N :_R M) \subseteq (S⁻¹N :_{S⁻¹R} S⁻¹M) or ax/st \in S⁻¹N or bx/wt \in S⁻¹N. Hence S⁻¹N is an (S⁻¹ ϕ)-2-absorbing submodule of S⁻¹M.

Proposition 5.13. Let $R = R_1 \times R_2 \times ... \times R_n$ and $M = M_1 \times M_2 \times ... \times M_n$ be an R-module, where R_i is a commutative ring and M_i is an R_i -module, for each $i \in \{1, 2, ..., n\}$. Let $N = N_1 \times N_2 \times ... \times N_n$ be a ϕ -2-absorbing submodule of M, where N_i is a submodule of M_i and let $\psi_i : S(M_i) \longrightarrow S(M_i) \cup \{\emptyset\} \ \forall \ i \in \{1, 2, ..., n\}$ and $\phi(N) = \psi_1(N_1) \times \psi_2(N_2) \times ... \times \psi_n(N_n)$. Then N_i is a ψ_i -2-absorbing submodule of M_i , for each j with $N_i \neq M_i$.

Proof. Let $x_j \in M_j$ and $a_j, b_j \in R_j$ such that $a_jb_j \ x_j \in N_j - \psi_j(N_j)$. Thus $(1,1,...,1,a_j,...,1)$. $(1,1,...,1,b_j,...,1).(0,0,...,0,x_j,...,0) = (0,0,...,0,a_jb_jx_j,...,0) \in N - \phi(N)$, but N is ϕ -2-absorbing submodule. Therefore, $(1,1,...,1,a_j,...,1).(1,1,...,1,b_j,...,1) \in (N:M)$ or $(1,1,...,1,a_j,...,1).(0,0,...,0,x_j,0,...,0) \in N$. So we have $a_jb_j \in (N_j:M_j)$ or $a_jx_j \in N_j$ or $b_jx_j \in N_j$. Thus N_j is ψ_j -2-absorbing submodule for each j.

Corollary 5.14. Let $R = R_1 \times R_2 \times ... \times R_n$ and $M = M_1 \times M_2 \times ... \times M_n$ an R-module and $N = N_1 \times N_2 \times ... \times N_n$, where R_i is a commutative ring and M_i is an R_i - module and N_i is a submodule of M_i , for $i \in \{1, 2, ..., n\}$. Let N be a ϕ_n -2-absorbing submodule of M. Then N_j is a ϕ_n -2-absorbing submodule of M_j , for each j with $N_j \neq M_j$ and $n \geq 2$.

Proof. We have $\phi_n(N) = (N:M)^{n-1}N = (N_1:M)^{n-1}N_1 \times (N_2:M)^{n-1}N_2 \times ... \times (N_n:M)^{n-1}N_n$ = $\phi_n(N_1) \times \phi_n(N_2) \times ... \times \phi_n(N_n)$. So the result follows by Proposition 5.13.

References

- [1] Anderson, D.D., and Bataineh, M., *Generalizatins of prime ideals*, Comm. Algebra, Vol. 36, pp 686-696, (2008).
- [2] Ashour, A.E., *On Weakly primary submodules*, Journal of Al Azhar University-Gaza (Natural Sciences), Vol.13, pp 31-40, (2011).
- [3] Atani, S.E and Farzalipour, F., *On Weakly primary ideals*, Georgian Mathematical Journal Volume 12, Number 3, pp 423-429, (2005).
- [4] Atani, S.E and Farzalipour, F., *On Weakly prime submodules*, Tamkang Journal Of Mathematics, Volume 38, Number 3, pp 247-252, (2007)
- [5] Atani, S.E. and Darani, A.Y., *Weakly Primal Submodules*, Tamkang Journal Of Mathematics, Volume 40, Number 3, pp 239-245, (2009).
- [6] Athab, E.A., *Prime and Semiprime Submodules*, M.Sc. Thesis, College of Science, University of Baghdad, (1996).
- [7] Bataineh, M. and Kuhail, S., *Generalizations of Primary Ideals and Submodules*, Jordan University of Science and Technology, Jordan, Int. J. Contemp. Math. Sciences, Vol. 6, no. 17, pp811 824, (2011).
- [8] Darani, A.Y., *Generalizations of primal ideals in commutative rings*, Matematiki Vesnik, Iran, vol. 64(1), pp25-31, (2012).
- [9] Darani, A. and Soheilnia, F., 2-Absorbing and Weakly 2-Absorbing Submodule, Thai Journal of Mathematics Volume 9, Number 3, pp 577-584, (2011).
- [10] Darani, A.Y., When an Irreducible Submodule is Primary, International Journal of Algebra, Vol. 2, no. 20, pp 995-998, (2008).
- [11] Darani, A.Y, Almost Primal Ideals in Commutative Rings, Chiang Mai J. Sci., 38(2), pp 161-165, (2011).

- ISSN: 2395-0218
- [12] Dauns, J., Primal modules, Communications in Algebra, 25:8, pp 2409-2435, (1997).
- [13] Dubey, M. and Aggarwal, P., On 2-Absorbing Submodules over Commutative Rings, ISSN 1995-0802, Lobachevskii Journal of Mathematics, Vol. 36, No. 1, pp. 58-64, (2015).
- [14] Khaksari, A., ϕ prime submodule, International Journal of Algebra, Vol. 5, no. 29, pp 1443 1449, (2011).
- [15] Khashan, H.A., *On almost prime submodules*, Science Direct, Acta Mathematica Scientia, Vol.32, No.2, pp 645-651, (2012).
- [16] Li-min, W., and Shu-xiang, Y., On almost primary submodules, Journal of Lanzhou University (Natural Sciences), Vol. 49 No. 3, (2013).
- [17] Lu, C.Pi., *Prime Submodules of modules*, Comment. Math. Univ. St. Paul, Vol.33 No. 1, pp 61-69, (1984).
- [18] Northcott, D.G., Lessons on Rings, Modules, and Multiplicties, Cambridge University Press, (1968).
- [19] Sharp, R., *Steps in commutative algebra*, Cambridge University Press, Cambridge- New York-Sydney, (2000).
- [20] Zamani, N., ϕ prime submodule, Glasgow Mathematical Journal, Iran, volume 52, issue 02, pp 253-259, (2010).