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1 Introduction and Preliminaries

It is a well-known fact that the mathematical results regarding fixed points of contraction type
mappings are very useful for determining the existence and unigeness of solutions to various
mathematical models.

Azam et al.[1] introduced the notion of a complex valued metric space which is a generalization of the
classical metric space and obtained sufficent conditions for the existence of common fixed points of a pair
of mappings satisfying a rational contractive condition.Though complex valued metric spaces form a
special class of cone metric space, yet this idea is intended to define rational expressions which are not
meaningful in cone metric spaces and thus many results of analysis cannot be generalized to cone metric
spaces. However, in complex valued metric spaces, one can study improvements of a host of results of
analysis involving divisions.Later several authors proved fixed and common fixed point theorems in
complex valued metric spaces ,for example, refer [3, 6, 9, 11, 13, 14, 16, 17, 19, 20, 23, 26].

In this paper,we prove a unique common fixed point theorem for two pairs of mappings satisfying a
contractive condition of rational type in the frame work of complex valued metric spaces using « -
admissible function. The proved result generalizes and extends some of the results in the literature.

To begin with, we recall some basic definitions, notations and results.
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Throughout this paper R . R*T . A and C denote the set of all real
numbers, non-negative real numbers | positive integers and complex numbers
respectively. First we refer the following preliminaries.

Let 21, 20 € C. Define a partial order = on C follows:

21 D zg ifand only if Re(2) < Re(zy), Im(21) < Im(2y).

Thus 21 = 29 if one of the following holds:

(1'}1?0( ) = R(ﬁ( %) and I'm(zy) = Im(z),
(2)Re(zy) < Re(zg) and I'm(2y) = I'm(zy),
(3)Re(z1) = Re(zg) and I'm(2y) < I'm(zg),
(4)]?0(,2 ) < Re ( o) and I'm(zy) < I'm(z).

Clearly z; = 20 = |21] < |29].

We will write 2; 3 29 if 21 # 2 and one of (2), (3) and (4) is satisfied. Also
we will write 2; < 29 if only (4) is satisfied.

Remark 1.1 One can casily check that the following statements :
(1) if 0 2 21 3 2 then |2z1| < |2];
(ii) if 21 3 29 and 29 < 23, then 2y < 23,

Definition 1.2 Let X be a non empty set. A function d : X x X — C
is called a complex valued metric on X if for all x.y.z. € X the following
conditions are satisfied:

(i) 0 2 d(x,y) and d(x,y) = 0 if and only if v = y;
(i) d(x,y) =d(y, r);
(iii) d(x,y) Sd(x, 2)+d(z. y).

The pair (X, d)is called a complex valued metric space.

Remark 1.3 Let (X, d) be a complex valued metric space. Then
(i) |d(x.y)| < |1+ d(x, y)|, forall z.y € X.
(ii) |d(x,y)| = 0 ifr £y .
Definition 1.4 Let (X, d) be a complex valued metric space.
(i) A point x € X s called interior point of a set A C X whenever there
exists 0 <1 € C such that B(x.r)={y € X :d(x,y) <r} C A,

(7i) A point v € X is called a limit point of a set A € X whenever there
exists 0 <1 € C such that B(x,r) (X — A) # o.

(7ii) A subset B C X s called open whenever each point of B is an interior
point of B.
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(iv) A subset B C X is called closed whenever each limit point of B s in B.

(v) The family F = {B(x,r):x € X and 0 <71} is a sub basis for a topology
on X. We denote this complex topology by 7.. Indeed, the topology 7, is
Hausdorff.

Let {x,} be a sequence in X and = € X If for every ¢ € C with 0 =< ¢ there is
ng € N such that for all n > ng, d(x,, x) < ¢,then {x,} is said to be convergent
to x and x is the limit point of {z, }.We denote this by lim z, =xrorx, —

n—o00

as n — oc. If for every ¢ € C with 0 < ¢ there is ng € A such that for all
n > no, d(Tn, Tnym) < ¢, where m € N then {x,} is called a Cauchy sequence
in (X, d). If every Cauchy sequence is convergent in (X, d) then (X, d) is called
a complete complex valued metric space. We require the follwing lemmas.

Lemma 1.5 ([1]) Let (X, d) be a complex valued metric space and let {x,}
be a sequence in X.Then {x,} converges to x if and only if |d(x,.x)| — 0 as
n— oc.

Lemma 1.6 ([1]) Let (X, d) be a complex valued metric space and let {x,}
be a sequence in X. Then { In} is a Cauchy sequence if and only iof |d(x . Tpim)|
— 0 asn,m— x.

One can easily prove the following lemma

Lemma 1.7 Let (X, d) be a complex valued metric space and let {x,} and
{yn} be sequences in X converging to x and y respectively. Then |d(xy, vy )| —
|(E(:I:- '.U')‘ as n — oo.

Now we extend the definition of compatible maps introduced by Jungck [7]
in metric spaces to complex valued metric spaces as follows.

Definition 1.8 Let f and g be self mappings on a complex valued metric
space (X, d). Then the pair{f, g) is said to be compatible if im |d(fgx,, gfc,)|
TI— OO
= 0 whenever {x, } is a sequence in X such that lim fx, = lim gr, = 2 for
n—oo

n— o0

some z € X.
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Definition 1.9 (/8/)Let X be a non-empty set and f,S : X — X.The pair
(f,S) is said to be weakly compatible if fSu = S fu whenever fu = Su for

ue X.

The Banach contraction principle plays an important role in nonlinear analysis
and has numerous generalizations and several applications. Suzuki proved
generalized versions of Banach's and Edelstein’s basic results. The importance
of Suzuki contraction theorem is that the contractive condition required to be
satisfied not for all points of the domain of mapping involved in it.

First we give the following theorem of Suzuki [24].

Theorem 1.10 ( [2}]) Let (X,d) be a complete metric space and let T be
a mapping on X . Define a non-increasing function 6 : [0, 1) — (% 1} by

; e (V51
1.. if 0<r<>5—,

Assume that there exists v € [0,1) such that
O(r)d(x, Tx) < d(x,y) = d(Tx,Ty) < rd(z,y)

for all x,y € X. Then there exists a unique fived point =z of T. Moreover
lim T"r = = for all v € X.
n— 20
Later in this direction several authors, for example,[4, 5, 10, 21, 25] proved
fixed and common fixed point theorems.

Samet et al. [2] introduced the notion of a- admissible mappings as
follows

Definition 1.11 (/2]) Let X be a non empty set, T : X — X and
a X x X — RT be mappings. Then T is called o- admissible if for all
v,y € X, we have a(x,y) = 1 implies o(Txz, Ty) > 1.

Later Shahi et al. [18] and Abdeljawad [22] defined the following

Definition 1.12 ([18]) Let X be a non empty set, a : X x X — R*F
and f.qg : X — X . Then [ is said to be a- admaissible with respect to g if
algr,gy) = 1 implies a(fx, fy) = 1 for all x,y € X.

Definition 1.13 (/22]) Let X be a non empty set, a : X x X — R* and

fig: X — X . Then the pair(f,g) is said to be a-admissible if a(x,y) > 1
implies o fr,gy) = 1 and a(gzx, fy) = 1 for all v,y € X.
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Using these definitions. we introduce the following a-admissible condition
involving four maps.

Definition 1.14 Let X be a non empty set, o - X xX — R* and f,q.S.T :
X — X . The pair (f,q) is said to be a- admissible w.r.to the pair (S, T) if
a(Sz, Ty) = 1implies o fx, gy) = 1 and o(Tx, Sy) = 1 implies a(gz, fy) = 1
forallz,y € X.

Recently Abbas et al. [12] introduced the new concepts in a partially ordered
set as follows

Definition 1.15 ([12]) Let (X, <) be a partially ordered set and f,g : X —
X.
(i)f is said to be a dominating map if v =< fx.
(ii) [ is said to be a weak annihilator of q if fgr = x.

Definition 1.16 (X, d, =) is called a partially ordered complex valued met-
ric space if (i) (X, =) is a partially ordered set and (i) (X,d) is a complex
valued metric space.

Now we prove our main result.

2 Main Result

Theorem 2.1 . Let (X.d, =) be a partially ordered complete complex val-
wed metric space and o : X x X — R be a function. Let f.q.S and T be self
mappings on X satisfying the following

(2.1.1) f and g are dominating maps and f and g are weak annihilators of T
and S respectively,

(21.2) F(X) CT(X), g(X) C S(X),
(2.1.3) gmin{|d(fx,Sx)|.|d(gy. Ty)|} < max{|d(Sz.Ty)|,|d(fx.gy)|} implies

a(Se, Ty) d(fx,qy) 2 ard(Sx, Ty) + asd(Sx, fr) + asd(Ty, gy)

+ayd(Sz, gy) + asd(Ty, fx)
d(fz,Sz) d(gy,Ty) d(Sz,gy) d(Ty.fz)
+06 =T gisery T YT 1td(SxTy)

for all comparable elements x.y € X, where a;.i = 1,2,....7 are non-

i
negative real numbers such that > a; < 1,
i=1

(2.1.4) the pair (f,g) is a-admissible w.r.to the pair (S,T),

Volume 7, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm 932]




Journal of Progressive Research in Mathematics(JPRM)
ISSN: 2395-0218

(2.1.5) a(Sxzy, fry) = 1 and o fry, Sxy) = 1 for some 1 € X,

(2.1.6)(a) S is continuous,the pair (f,S) is compatible and the pair (g, T) is weakly
compatible and if there exists a sequence {y,} in X such that a(y,., Yni1)
> 1, a(Ypg1,yn) = 1 for alln e N and y,, — 2 for some 2 € X, then we
have o(Syan, Yon—1) = La(2, yon_1) = L,a(z,2) =2 1 and a(2,T2) = 1,

(or)

(2.1.6)(b) T is continuous,the pair (g, T) is compatible and the pair (f,S) is weakly
compatible and if there exists a sequence {y,} in X such that a(y,., Yni1)
> 1, @(Yng1,Yn) = 1 for alln € N and y,, — = for some = € X, then we
have o(Yon, Tyon—1) = 1, a(yon. 2) = La(2,2) = 1 and a(Sz,2) > 1,

(2.1.7) if for a non-decreasing sequence {x,} in X with x, =< y,.Yn € N and
Y — u implies v, < u¥n € N.

Then f,q,S and T have a common fixed point in X .

(2.1.8) Further if we assume that a(u,v) > 1 whenever w and v are common
fized points of f.g.S and T and the set of common fixed points of f.q. S
and T is well ordered then f,q.S and T have unique common fived point
in X.

Proof. From (2.1.5), we have a(Szy, fry) > 1 and a(fry, Sxy) > 1 for
some 1, € X.
From (2.1.2), there exist sequences {x,} and {y,} as follows:
Yont1 = fTony1 = Tong2, Yonio = gTongo = STopqz, n=0,1,2.---

Now
a(Szy, fry) 21 = a(Sry, ng) > 1, from definition of {y,}
= affry,gre) = 1, from (2.14), ie aly,y) = 1
= a(Txy, Sra) > 1, from definition of {y,}
= a(gre, frs) = 1, from (2.14), i.e alyz,yz) = 1
= a(Szy, Try) =1, from definition of {y,}
= affrs,gry) = 1, from (2.14), i.e alys,ys) > 1

Continuing in this way, we have
N Yps Yns1) =1, ¥V nelN (1)
Similarly by using a(fry, Szy) = 1, we can show that

A(Ypg1-Un) = 1. ¥V nelN (2)
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From(2.1.1), we have

Topg1 = frong1 = Tonys = [Tron40 = Tonya .

e > Ta sl P T/ - - T.- * e +
Top42 = JTopyo = S Top43 = fja_%.l.-gn+3 = Topy3- Thus

Ty = Tpy1, VN € N (3)

Case (i): Suppose Yo, = Yomy1 for some m.
Assume that 2,41 # Yom+2.
Now a(STomi1, TTomys) = (Yom, Yoms1) = 1, from (1).
Also we have
% min { |d(fromy1, Stomi1)|, |[d(9T2mao, Tromis)|}
< max{|d(Sromy1, Tromio)| . |d( fTomi1, gTamas)| . from def.of {y, }.
From (2.1.3) and (3),we have
d(Yom+1: Yams2) = d( fTomi1. 9Tomt2)
2 a(Svomqr. Tromyo)d( fromi1. 9Toma)
= a1d(Yom. Yom+1) + @2d(Yom. Yom+1) + a3d(Yom1. Yom+2)

+asd(Yam: Yom+2) + a5d(Yomi1: Yomy1)
‘H!- d{y2m~y'2m+1)d{92m+1_-y2m+2) +G_'_d{yﬁm~y'2m+2)d{y2m+lsy2m+l)
1+d{y2m~y'ﬂm+l) ! 1+d{y2m~y2m+l}
—~

= a3d(Yoma1s Yamr2) + aad(Yomi1s Yoamr2)
= (a3 + a4)d(Yom+1. Yom+2)
Thus |d(y2ma1, Yemy2)| < (a3 + aq) |[d(Y2my1. Yoms2)|.
[t is a contradiction.Hence yo,,141 = Yomio.
Continuing in this way we can conclude that y, = 1,4 for all positive
integers [. Thus {y,} is a Cauchy sequence in X.
Case (ii): Suppose that y, # y,41 for all n € N,
Now a(Szo,i1, Tronta) = o Yan, Yona1) = 1, from (1).
As in Case (i), we have
|d(Y2nt1: Yant2)| < k1 |d(Y2n: Yont1)|, where ky = poitaetos <7,
Similarly using (2),we can show that |d(yon. Yoni1)| < ko |d(Y2n—1, Y2n )|, Where

ko = yHEaatas .
—az—as—ag

Let k = max {ky, ko}. Then £ < 1.
Thus, we have |d(Yn, Yni1)| <k |d(Yn_1. yn)|for n =234, ...

A (s Yng1)| < K70 |d(yr, yo),n = 2.3,4, ... (4)

|d(Yns Uns1)| — 0 as n— x (5)

) we have

For m > n,using (
(Y Ym)| < 1A g 1)] +1dWngrs Yna2) |+ oo+ 1A (Y1 Y|
[k‘.'”_l I + k‘-m_g] |d(y1, y2)|

S5 ld(n )| — 0 as n.m — .

A IA I

Thus {y,} is a Cauchy sequence in X. Since (X,d) is complete . there exists
2 € X such that lim |d(y,,2)| =0, from Lemma 1.5.
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Hence

lim fro,y1 = lim gro,io = lim Swg,yy = lim Ty, = 2. (6)
n—oo n—00 n—0o n—oo '

Suppose (2.1.6)(a) holds.
Suppose Sz #£ 2
Since the pair (f S) is compatible, we have lim |d(fSxony1, SfToni1)| =

n—o0

Since S is continuous at z, we have SSxg,11 — Sz and Sfwrg, 1 — S2. Also

|d(fSxoni1, S2)| < |d(fSTons1. Sfronyr)| + |d(Sfronyt, S2)|.
Letting n — oo, we get lim fSry,41 = 5S> by Lemma 1.5.
n— 00

If  Lmin{|d(fSront1, ,5',5';f:gﬂ_+1)| d( 9, Tan )|}
> max{|d(SSTons1. Txa,)| . |d(fSToni1. gron)|}

then letting n — oc and using Lemma 1.7, we get 0 > |d(Sz, 2)|. It is a
contradiction. Hence
%111i11{|d(f%*-‘1'2n+1 SSxony1)|, |d(gran, Tran)|}
< max{|d(SSxani1, Tron)|, |d( fSToni1, gTan)|}.

Clearly a(SSwoni1, Twon) = (Syon, Yon—1) = 1, from (2.1.6)(a).
From(2.1.1), we have 9, = g2, = STo,41.
From (2.1.3) and Lemma 1.7, we have

|d(Sz, 2)| = 1i111 |c£' fSToni1, gTon)|
< lim rt(%%fgnﬂ Txon) |d(fSToni1. gTan )]

ay |d(SSwant1, Twop)| + ag |d(SSwans1, fSTant1)| + as |d(Txan, gran)|

‘ f ) -./ » el A 1 e iy -./ -
< lim +ay |(f(5 b.l.gn_'_l_. (;Igﬂ” + as |(f(TEQn f;5.l,2ﬂ_+1)|
" 4a |d(SSTont1,fSrant1)| |d(Tron,g7on )| + ay |d(SSwan+1, 9 2n)| |d(T22n,fSTon+1)|
6 [14+d(SS2n+1,Tw20)| [1+d(SSwant1,Tr2n)]
)l

< ay |d(Sz, 2)| +ay |d(Sz. 2)| + a5 |d(Sz, 2)| + ar |d(“T“fjjﬁ| S'f:q )

< (ay +aqg+ a5+ az7)|d(Sz, 2)| < |d(Sz, 2)|, from Remark 1.3(i)

2

It is a contradiction. Thus Sz = 2.

Suppose [z # 2.

If %111111{|(£(Sz. f2) . d(gran, Troy)|} = 111ax{|d'(5> Txon)|, |d(fz, gran )|}
then letting n — oc, we get 0 > |d(fz, )|, from (7) and Lemma 1.7 .

It 1s a contradiction. Hence

1 _ _
5111111{|d(5 I d(gren, Ty )|} < max{|d(Sz, Txg,)|, |d(f2, gran)|}

Also a(S2, Twe,) = a2, Yop1) = 1, from (2.1.6)(a).
Since g, = gro, and gry, — 2.by (2 1.7), we have x5, < 2.
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From (2.1.3) and Lemma 1.7, we have

|d(fz, 2)| = 11111 |d( [z, gran)|
11111 n.(%> Tlgn) |d( [z, gran)|

ay |d(z, Txg,)| + ag |d(z, f2)| + as |d(Txon. gray)|

< lim | Fag|d(z. gron)| + as|d(Tag,. f2)]
n—oc |d(z,f2)| |d(Tx2n.g22n)| |d(z.gz2n)| |d(Tx2n.f2)]
06T G T + TG T )]

< agld(z, f2)| +as |d(z f2)]
= (ag +as) |d(z, f2)| < |d(z f2)]

It is a contradiction. Thus fz = =,

Since f(X) C T(X), there exists w € X such that 2 = f2 = Tw. Also we
have 2 = f2=Tw =< fTw =< w, from (2.1.1).

From(2.1.6)(a), we have a(Sz, Tw) = a(z, 2) > 1.

Suppose 2 # gw. Clearly we have

smin {|d(Sz, f2)|,|d(gw. Tw)|} = min {|d(z,

2, 2)|, |d(gw, 2)|}
=0 < max{|d(Sz,Tw)|,|d(fz, gw)|}.
From(2.1.3), we have
d(z, gw) =d(fz, gw)
S a(Sz, Tw)d(fz, gw)

ayd(z, 2) + agd(z, 2) + azd(z, gw)
=< | tagd(z, gw) + asd(2, 2)

d(z)g(zgw) | - d(zgw)d(z.2)
L v mal L S W)

= azd(z, gw) 4+ asd(z, gw)
Thus |d(z, gw)| < (az + ay) |d(z, gw)| < |d(z, gw)| .

It is a contradiction. Thus 2 = gw.

Since the pair(g,T) is weakly compatible |, we have g2 = ¢Tw = Tgw =T=.
From (2.1.6)(a),we have a(S2,Tz2) = a(z,T2) = 1.

Suppose 2z # gz. Then
smin {|d(Sz, f2)|,]d(g2. T2)|} = min{|d(z, 2)| . |d(g=,T=)|}

=0 < max{|d(S=z,T=z)|,|d(fz g2)|}.

From (2.1.3), we have
d(z,92) = d(fz. gz)
S a(S2,T2)d(fz g2)
ard(z,Tz) + axd(z, 2) 4+ asd(T 2, g2)

=3 +ayd(z, 92) + asd(gz, 2)
+a-6d{ij§g?f 2 4 q 4z o d{}f(ﬁ:}”}
=ayd(z,92) + agd(2, g2) + asd(z,g2) + ay %.
Thus from Remark 1.3(i),|d(2, g2)| < (a1 +as+ a5 +a7) |d(z, g2)| < |d(z, g2)].
It is a contradiction. Hence 2 = g2 =T 2.
Thus 2 is a common fixed point of f,¢g. S and T.
Suppose 2 is another common common fixed point of f,¢.S and T
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From (2.1.8), we have a(S2,T2") = a(z,2/) > 1 and 2 < 2".
Now

smin{|d(fz,52)|,|d(g2".T>")]} = Fmin{0,0)}
=0 < max{|d(Sz.T2)|,|d(fz g2")|}.

Hence from (2.1.3),we have
d(z, 2"y =d(fz g2)
Sa(Sz, T2 d(fz g2)
ald( ) + asd(z, 2) + asd(2', =)
, 2! 2, 2"

d(z,z") d(z,2")

+d(z2") { {
= ayd(z, ') + agd(2, ') + asd(2, ') + az rid(ii;{jff; )

Hence from Remark 1.3(i),we have

|d(2z,2")] < (a1 +ay+ as +ay) |d(z, 2")] < |d(z, 2)].
[t is a contradiction. Thus > = 2/

Thus f.g.5 and T have a unique common fixed point.
Similarly we can prove Theorem 2.1 when (2.1.6)(b) holds.

Now we give an example to support Theorem 2.1.

Example 2.2 Let X = [0, 00), d(x, i v —yl.¥Vaye X and define
x =y of y<ax. Define f,q,57T : X X by fr =3, gv =73, Sr=38r
and T'x = 4x.
L ifa,y e [0,1],
Define a: X x X — RT by a(x,y) =
0. otherwise.
We have fr =35 <r=x = frandgr=7 <v=ur=gr.
Also fTr=2x > 1= fTx =<z and gSv =2v > v = gStr < 1.
Ifv > L and y € X then o(Sx.Ty) = 0.
If v < z and y > % then oSz, Ty) = 0.
In these cases,the condition (2.1.3) is clearly satisfied.
Suppose x < % and y € [0, %] then o(Sx, Ty) = 1.
In this case, we have
a(Sx, Ty)d(fr,gy) =1 |2 -2

12 T g
=1 22—y
=1 |8z — 4y|

= % d(Sx,Ty)
Thus (2.1.3) is satisfied for all v,y € X with a; = % and a; = 0 fori =
2.3.4.5.6.7
One can easily verify the remaining conditions of Theorem 2.1. Clearly 0 is
the common fized point of f. g, S and T
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