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Abstract

This paper concerns the study of the numerical approximation for the following parabolic equations with a
convection term

u (X, t) =u, (X, t) —u(x,t)u, (x,t) +u”(x,t), O0<x<l, t>0,
u,(0,t)=0, u,(t)=0, t>0,
u(x,0)=u,(x)>0, 0<x<1

where p >1.

We obtain some conditions under which the solution of the semidiscrete form of the above problem blows
up in a finite time and estimate its semidiscrete blow-up time. We also prove that the semidiscrete blow-
up time converges to the real one, when the mesh size goes to zero. Finally, we give some numerical
experiments to illustrate ours analysis.

Keywords: Burgers' equation; semidiscretizations; discretizations; parabolic equations; convection
term; blow-up; blow-up time; convergence.

1. Introduction

Consider the following boundary value problem

u, (X, t) =u, (X, t) —u(x,t)u, (x,t) +u’(xt), 0<x<l t>0, @)
u,(0,t)=0, u,(Lt)=0, t>0, )
u(x,0) =uy,(x) >0, 0<x<l, 3)

where p>1,u, € C*([0,1]), ujis nondecreasing on the interval (0,1) and verifies

U,(0)=0, u,(1) =0, 4)
Uy (X) = Uy (X)Uy (X) +U0 (X) =0, 0<x<1, (5)
U, (X) >-p(p-1 uy(x), 0<x<1, (6)
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1.1 Definition

We say that the solution U of (1)-(3) blows up in a finite time if there exists a finite time T, such that
||u(.,t)||oo <o forte [O,Tb) but

lim_; Ju(.t)], =co.
The time T, is called the blow-up time of the solution U .

The above problem arises in fluid mechanics and is called viscous Burgers' equation in one dimension with a
reaction term. The solution u(xt) represents the motion field of the fluid in space and time. Burgers' equation with a
reaction term is a transport equation with a convection term. The term uu, is called convection term. It's a nonlinear
term that ensures the movement, generates instability and also responsible for the turbulent appearance (here we'll
refer to it as intermittent since we are in one dimension) when it happens. In the general case the term u,, is replaced
by vu,, with v > 0. The term vu,, is the viscous term, which has the opposite effect of slicking and making it appear
laminar that is ordered. The constant v, coefficient of the viscous term, is called the kinematic viscosity (normalized
by the density) of the fluid. The fluid's flow ability is inversely proportional to the size of the viscosity. The term uP
(the reaction term) is the external force which is generally a white and Gaussian noise within the time scale which
forces the fluid to flow faster, slower or make it mill around. It's the quantitative relation between the convection
term and viscous, called Reynolds number that will condition the appearance of the flow in the case when there is
no external force. The Burgers' equation occurs in various areas of applied mathematics such as modelling of gas
dynamics and traffic flow. It was in 1939 that the Dutch scientist Johannes Martinus Burgers simplified the Navier-
Stokes equation by just dropping the pressure term (see [2], [23]).

The theoretical study of blow-up solutions for the parabolic equations with a convection term has been the subject
of investigations of many authors (see [3], [6], [7], [8], [9].[19], [20], [21] and the references cited therein). Local
in time existence and uniqueness of the solution have been proved(see [4], [5], [24], [26] and the references cited
therein). Here, we are interesting in the numerical study using a semidiscrete form of (1)-(3). We give some
assumptions under which the solution of a semidiscrete form of (1)-(3) blows up in a finite time and estimate its
semidiscrete blow-up time. We also show that the semidiscrete blow-up time converges to the theoretical one when
the mesh size goes to zero. A similar study has been undertaken in [1] and [26].

The paper is organized as follows. In the next section, we present a semidiscrete scheme of (1)-(3) and give some
lemmas which will be used throughout the paper. In section 3, under some conditions, we prove that the solution of
the semidiscrete form of (1)-(3) blows up in a finite time. In section 4, we study the convergence of the semidiscrete
blow-up time. Finally, in last section, taking some discrete forms of (1)-(3), we give some numerical

experiments.

2. Properties of the semidiscrete scheme

In this section, we give some lemmas which will be used later. We start by the construction of the semidiscrete
scheme. Let | be a positive integer and let h=1/I. Define the grid x;=ih, 0<i <| and approximate the solution u of

(1)-(3) by the solution U, (t) = (Uo(t),Ul(t), U, (t))T of the following semidiscrete equations

%:62Ui(t)—Ui(t)5°Ui(t)+Uip(t), 1<i<l-1 te(0T,) @)

%:52u0(t)+uop(t), te(0,T)), ®)
%:52u,(t)+u,p(t), te(0,T), )
U0)=¢ >0 0<i<lI, (10)
where

52UI(t) — Ui+1(t)_2Ui2(t)+Ui—l(t) , 1<i<l _1’

h
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2U 1 71(t) — 2U| (t)
h2

52U0 (t) — 2U1(t) r:zzuo (t)

U (1) =

5, (t) = 1O =Y (¥

,  1<i<l-1,
2h

5°U,(t) =0, 5°U,(t)=0,
5 =@, 0<i<I-1,

5'p,<0,0<i<l-1,

P’ > —p(p-Dhef’d%p, 1<i<I-1, p>2.

Here, (0,T,") is the maximal time interval on which U, (t)| is finite, where
U, )], =max., U (®).

When the time Tbh is finite, we say that the solution U, (t) of (8)-(10) blows up in a finite time, and the time Tbh

is called the blow-up time of the solutionU , (t).

Lemma 2.1 Let a,(t), b, (t) € C°[0,T),R"**) and let V, (t) e C}([0,T),:'**) where b, (t)5V, (t) <O,
such that

% — SV, (t) + b, ()W, (1) +a ()V,(t) >0, 0<i<I, te(0,T) 11)
V,(0)>0, 0<i<I. (12)

Then we have

V,()>0,0<i<I,te(0,T). (13)

Proof. Let T, be any quantity satisfying the inequality T, < T and define the vector Z, (t) = ™V, (t) where
A is such that

at)—1>0for 0<i<lI, te[0,T,]

Let M=mMiny_ o.cr, Z;i(t). Since, Z;(t) is a continuous vector on the compact [0,T,]. there exists
i, €{0,--,1} and t, €[0,T,]such that m = Z, (t;). We observe that

92, () _ lim, _, Z,) =2, t 7l g 0<i<I, (14)
dt K

5°Z, (t,) = Zia(to) - Zz‘ﬁz(tf’) +Z,a(h) >0, 1<i,<1-1, (15)

57, (t,) = zzl(to)r;zzo(to) >0 if i=0, 16)

52, (ty) = 22 =22, () 5 o ¢ a7)

h2
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From (11), we obtain the following inequality

dz; (t,)
dt

- 5zzi0 (t) + bi0 (to)é‘ozi0 (t) + (aio (t) - i)zio (t,)=0. (18)
It follows from (14)-(18) that
(a, (t) - )Z, () 20, 1)

which implies that Z; (t;) =0 because & (t,) —A > 0. We deduce that V, (t) = Ofor t [O,TO] and the proof
is complete.

Lemma 2.2 Let V, ()W, () € C*([0,T]%'*) and f & C*(Rx R, R) such that

DO 53,0+ %o, 0+ 10,0 < o -
SAW, () +W, (t)SW, (t) + f (W, (t),t), 0<i<I, te(0,T), (20)
V.(0) <W,(0), 0<i<I. 1)

Then we have
V,(t) <W,(t), 0<i<I,te(0,T).

Proof. Define the vector Z,(t) =W, (t)—V,(t). Let t, be the first t>0 such that Z,(t)>0 for
te [O,to), 0<i<lI,but Zi0 (t,) =0 foracertain i, € {O,---, | } We remark that

L)y, Zel) =262 o gy,
dt - k
Z (t)—-2Z (t,)+Z _(t
5°Z, (t,) = LY Ir:Z( o) '°’1(°)20, 1<i,<1-1,
5°Z; (to)zzzl(to)gzzzo(to) >0 if i,=0,
522i0 (to) — 2Zl—l(to)_zzl (to) >0 if i0: l

h2
Therefore, we have
dz; (t,)

dt

which contradicts the first strict inequality of the lemma and this end the proof.

—8°Z, (1) +W, ()W, (t,) -V ()Y, (&) + f(V, (t.).t,) — T W, (t,).t,) <O,

Lemma 2.3 Let U, (t) be the solution of (7)-(10). Then, we have
U,(t)>0 for 0<i<I,te(0,T,). 22)

Proof. Assume that there exists a time t; € (O,Tbh) such that U; (t;) =0 for a certain i, € {0,--,1}. we

observe that

dUi(J (to) —lim Ui0 (J[o)_ui0 (to_k)
dt k—0 k

<0, 0<i<l,

Volume 5, Issue 2 available at www.scitecresearch.com/journals/index.php/jprm 502




Journal of Progressive Research in Mathematics(JPRM)
ISSN: 2395-0218

Uy, a(t) =2U; () +U; (k)

52U, (t,) = 2 >0, 1<i<1-1,
5, (t,) = Zul(to);zzuo(to) >0 if i,=0,
5, (t,) = ZU'—l(to)h; i) Lo if i1,

which implies that

M_5zuo(to) _Uop(to) <0,

dt
U. (t
(;I)t( g =%, () +U,, ()5, () ~U7 () <0, 1<i<I-1,
%‘yU.(to)—Uf’(tokO-

But these inequalities contradict (7)-(9) and we obtain the desired result.

Lemma 2.4 Let U, (t) be the solution of (7)-(10). Then, we have
U,..(t) <U,(t) for 0<i<I-1, te(0,T). (23)

Proof. Introduce the vector Z, (t) defined as follows Z,(t) =U, ,(t) —U,(t) for 0<i <1 —1. Lett, be the first
t>0 such that Z,(t) <Ofor t[0,t,) but Z, (t,) =0 for a certain i, € {0,---,1 =1}, Without loss of

generality, we may suppose that iy is the smallest integer which satisfies the above equality. It follows
that

Zi0 (to) - Zi0 (to - k)

dz (t,) . .
—(;to =lim, ” >0, O0<i,<I-1
Z (t)-2Z (t)+Z _(t
5°Z, (t,) = LY Iﬁz( o)+ Zi,4(%) <0, 1<i<1-1,
522i0 (to) — 2Zl(to) _2220 (tO) <0 if i0= 0,
which implies that
dZio (tO) 2 0 0, p p -
T_5 Zi0 (to)+Ui0+1(to)5 Ui0+1(t0)_Ui0 (to)5 Ui0 (tO)+Ui0 (to)_Ui0+1(to) >0, 1< Iy <l-1

Bolb) 57, 0) + 02t -Ur @) >0

Therefore, we have a contradiction because of (7)-(8). This ends the proof.

Lemma 2.5 Let U, (t) be the solution of (7)-(10). Then, we have

Wi Jo for 0<i<l, teloT).
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,0<i<Il. Let t; be the first t>0 such that

Proof. Consider the vector Z, (t) with Z,(t) = —dL(Jj't(t)

Z,(t)>0for te[0,t,) but Z, (t,) =0 for a certain i, € {0,---,1}. Without loss of generality, we may
suppose that i is the smallest integer which satisfies the above equality. We get

Zi0 (to) - ZiD (to - k) <0

dZiO t) .. )
— = lime > <0, 0<i <,
Z (t)-2Z (t)+Z ,(t
5°Z, (t,) = 0a(t) ;50) '“4(0:>0,1g%g|-L
522i0 (t)= zzl(to)r:zzzo(to) >0 if i,=0,
§ZZi0 (to) _ 22|l(t0)hz_ ZZO(tO) > o I.I: i0: I ’

which implies that

dz;, (t,)

_522i0 (t0)+Ui0 (to)é‘ozi0 (t0)+(50Ui0 (to)_ pUi:,)il(to))Zi0 (to) <0if 1< io <I-1

dZCOIEtO) h 6220 (to) - onpil(to) <0,

dz, (t,)
dt

But these inequalities contradict (7)-(9) and leads to the desired result.

- é‘Zzl (to) -pu |p71(t0) <0.

Lemma 2.6 Let U, (t) be the solution of (7)-(10). Then, we have, for p > 2,

UP(t) > —p(p—DhUP? M5, () for 1<i<1-1 te(0,T").

Proof. Define the wvectors Z,(t), K (t)and V,(t)such that Z(t)=K,(t)-V(t) with
K, () =U"™(t) and V,(t) = —p(p —DhU,"*(t)5°U, (t) for 1<i<1—1. Lett, be the first t >0 such

that Z,(t) > Ofor te[0,t,) but Z, (t,) =0 for a certain i, {L,---,1 —1}. We may suppose that iy is the
smallest integer which satisfies the above equality. It follows that

9,06 iy Bl 72670 g oy
dt K0 k P ’
5°Z, (t,) = Zipallo) ~ 2zﬁ2(t0) 20t g gi<r g
which implies that
dz‘(;t(t‘)) —8°Z, (t) + K (t)5°K,_ (t)) = Vi (t)NV, (t,) +V,P (1)) — K (t,) <0, 1<iy <1 -1,

But this inequality contradicts (7) and we obtain the desired result.

Lemma 2.7 Let U, € Cl<[O,T],§R'+1)SUCh that U, > 0. Then, we have,

Volume 5, Issue 2 available at www.scitecresearch.com/journals/index.php/jprm 504




Journal of Progressive Research in Mathematics(JPRM)
ISSN: 2395-0218

SUP > puPisty, for 0<i<lI, p>2

Proof. Using Taylor's expansion, we get

§2U0p _ puop—léQU0 +(U, _Uo)z p(zph2 1) o> 2

-U,)’ p(zphz )é:Ip +UL -V p(thz )elpiz’ 1<i<1-,

2 p(ph2 1)9{) 2
Where p>2,6, (U, U,), 8¢, U._)¢&eU,,.U)and 6 eU,,U, )

SUP = puUL 5%, + (U

i+1

SUP =pUPisU, +U,,-U))

The result follows taking into account the fact that U, > 0.
Lemma28Let U, € Cl([O,T],ER'”)SUCh that U, > 0. Then, we have,

~U,8%U° > —pUPsU, — p(p-DhUP(5%U,), 1<i<I-1 p=2.

Proof. Applying Taylor's expansion, we obtain

_Ui—1)2 p(p_l)U|F:2, 1<i<| _1, p=2’

SUP =pUPisuU, + (U
p i-1 ( 4h

i+1

_U_l)?’wgw 1<i<1-1, p=>3

SUP = pUPltoU, + U
i p i-1 i ( i+1 12h

_U _1)2 p(ph 1) U 812 (U

i+1
Where ¢ € (U,+1,U )
Using Lemma 2.4and U, >0, we have the desired result.

3. Semidiscrete Blow-up solutions

In this section under some assumptions, we show that the solution U}, of (7)-(10) blows up in a finite time and
estimate its semidiscrete blow-up time.

Theorem 3.1 Let Uy, be the solution of (7)-(10), then the solution Uy, blows up in a finite time Tbh with following

estimate
T < ! _ ! . (24)
(p—1) (miny.i, (1))
Proof. Consider the following differential equation
a(t)=a’(t),te(0,T,) p=2, (25)
a(0) =min,_, (@), (26)

. 1 1
with T, = - g
(p—21) (ming, (o, )N’
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Introduce the vector V, (t) suchthat V,(t) =a(t),0<i<1, te (O,Ta ) Let the vector Z, (t) define as follow

Z,(t) =U, (t) =V, (t). Itnot hard to see that

L 572,040,002, + (6N, - P ©)2,0) > 0if 0<t<1,1e(OT)
Z.(0) =0,

where 3 (t) € (V; (t),U,(t)) and T, = min{T,T,"}
Due to Lemma 2.2, we have U, (t) 2V, (t), 0<t<I, te (O,Tl). We deduce that

h<T < 1 1
b —'a — - p-1°*
(p—1) (miny, (&)

The following theorem gives a best result than the previous.

Theorem 3.2 Let U,, be the solution of (7)-(10). Suppose that there exists a positive integer A such that

52Ui (0)-U, (O)é'OUi () +Ui”(0) > ﬂUip(O), o<i<l. (27)
Then, the solution Uy, blows up in a finite time Tbh and we have the following estimate
1-p
Y TIOA
A (p-1

Proof. Let (O,Tph) be the maximal time interval on which ||Uh(t)||w < 00 . Our aim is to show that Tbh is finite

and satisfies the above inequality. Introduce the vector J, (t) such that

J(t):%—mip(t), 0<i<lI. (28)
A straightforward calculation gives
2
%_ﬂ +U,8%), = d L:i —zpuip-1%—52%+w2uip +ui5°(%) —AU,8UP 1<i< | -1
dt dt dt dt dt

From Lemma 2.7, we have 6°U,”> > pU.""6°U, for 0<i<1, p>2,whichimplies that

Y523 40,609 > Ly, —50) - purt(du, —570) +U 60 (LU ) - a0 5P 1< < 1 -1,
dt dt “dt dt dt

Using (7)-(9), we arrive at

%_mi +U,8%, + (6%, — pU/Y)J, = =AU, 87 + ApUPSU, — AUPSU, 1<i < | -1,
dJ ]

59 - U, 20,

Y523 pupty, 0.

dt
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Using Lemma 2.8 we get

%—aﬁi +U,8°3, +(8°U, — pUP ™I, > -AU,8%U, (U™ + p(p-DhU P 25%)), 1<i < 1 -1,

dJ .

d—t°—52J0 - puf, =0,

di—&], - puUliy, >0.
dt

From Lemma 2.6, we have U,”™ > —p(p —1)hU,";°6°U, for 1<i <1 —1 and using the fact that

— 2U,6%U; >0, we get finally
dJ, 2 0 0 -1 :
d—t'—§ J,+U;0°3,+(6°U, —pU ™), 20, 1<i<I-1,

dJ, (23,-23,)

dt he pUS 3, 20,
%——(23'?2‘]')— pUP?J, >0.

From (27), we observe that
J.(0) = 6°U,(0) - U, (0)5°U, (0) +U.°(0) > AU°(0), O<i<I.
We deduce from Lemma 2.1 that J, (t) >0 for t e (0,T,"), which implies that

%zzuip(t), 0<i<l, te(0,T,"). (29)

These estimates may be rewritten in the following form

U PdU, > Adt, O<i<I.

Integrating the above inequalities over (t,Tbh), we arrive at
-p
Tt SE(Ui(t))1 _ (30)
A (p-1)
which implies that
1-p
21O
A (p-1
Remark 3.1 The inequalities (30) implies that
1—
<1 SRCS
—t, <
A (p-1

4. Convergence of the semidiscrete blow-up time

T, if 0<t,<T,"

In this section, under some assumptions, we show that the semidiscrete blow-up time converges to the real one
when the mesh size goes to zero. In order to obtain the convergence of semidiscrete blow-up time, we firstly prove
the following theorem about the convergence of the semidiscrete scheme.

Theorem 4.1 Assume that (1)-(3) has a solution U € C“([O,l]x [O,T]) and the initial condition at (10) satisfies
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U? —u. (0)| =o(1) as h—0, (31)
s -u, 0],

Where U, (t) = (U(X,,t),-++,u(X,,t))" . Then, for h sufficiently small, the problem (7)-(10) has a unique
solution U, € Cl([O,Tbh],SR'“) such that

MaX .1 U, (0) =, ()], =O(UF —u,(0)] +h*) as h—0. (32)
Proof. Let K >0 be such that

Jul, <K. (33)

The problem (7)-(10) has for each h, a unique solution U, € Cl([O,Tbh ], ER'”). Let t(h) the greatest

value of t>0 such that

U, @ —u, @), <1 for te(0,t(h)). (34)

The relation (31) implies that t(h)>0 for h sufficiently small. Let t*(h) = min{t(h),T}. By the triangular
inequality, we obtain

U, O, <uC B, + U@ —u, @), for te(o,t(h)),

which implies that

U, ()], <1+K for te(0,t'(h)). (35)

Let &, (t) =U, (t) —u, (t) be the error of discretization. Using Taylor's expansion, we have for t € (0,t*(h)),

deé—t(t) - 5%, (1) +u(x,1)5°%, (1) = pA" (e, () —& (O5°u(x, 1) —hT:u(xi DU (%)
dey (t)  (2e,(t) —2ey(t)) _ . h_2 _

dt > = pAs (e, (t) + 15 Yo (D),
de, () (2e,(0)-2¢(t)  ,ou [

dt hZ = pp, (t)e| (t)+ % Uy (XI 1),

where f3 e (U, (t),u(x,t)) fori € {0,...,1}
Using (35), there exists a constant M>0 such that
de; (t)

_GF__5%40+uu“05%(03hﬂqaﬂ+hmﬁ,1sis|—1, (36)
de, (t 2e,(t) — 2e,(t
St()‘( 1()h2 o®) < e, 1)+ M, an
del (t) _ (Zel—l(t)_zel (t)) < M|e (t)|+|\/|h2. (38)
dt h? -

Consider the vector W, such that
W, (1) =e™ ' (U? —u,(0)] +Mh?),0<i<I.

A direct calculation yields
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%—5% (t) +u(x, t)SW; (t) > MW, (t)|+ Mh? 1<i<1 -1, (39)
dWo (1) _ (2W, (F) — 2W, (1)) 2

" = > MW, ()| + Mh?, (40)
dWI (t) _ (zvvl —1(t) — 2W| (t)) 2

" 2 > MW, (t)|+ Mh?, (41)
W,(0) >¢(0), 0<i<I. (42)

It follows from Lemma 2.2 that

W, (t) > e (t) for te(0,t"(h)), O<i<I.
By the same way, we also prove that

W, (t) > —¢,(t) for t e (0,t"(h)), O<i<I,
which implies that

W, (t) > [e, (t)] for t e (0,t'(h)), O<i<I.
We deduce that

U, —u, @], <e™7 (e -u,©)] +Mh?), te(0.t'(h)).

Let us show that t*(h) =T . Suppose that T >t (h) . From (34), we obtain

1=[U, t(h) —u, ()], <e™ " (Up -u, )| +Mh?). (43)

since eM*7 (HUS —u, (O)H +Mh?) — 0 when h — 0, we deduce from (43) that 1<0, which is impossible.
Consequently t*(h) =T , and we conclude the proof.

Theorem 4.2 Suppose that the solution u of (1)-(3) blows up in a finite time T, such that U € C“([O,l]x [O,Tb ])
and the initial condition at (10) satisfies

Ju? —u, ()] =o() as h—o0. (44)
Assume that there exists a constant A >0 such that

5°U;(0) -U, (0)6°U,(0) +UP(0) > AU (0), O<i<I. (45)
Then the solution Uy, of (7)-(10) blows up in a finite time Tbh and

lim, ,T."=T,. (46)

Proof . Let & > 0. There exists N such that

1-p
1y <% <o for ye[N,+oo[. (47)
A(p-) 2

Since lim, ;. maxx6[0‘1]|u(x,t)| = +00, then, there exists T, such that
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TT,| sg and Ju(x,t)],=2N forte[T,T,] Let T = TlerTb . then SUP, o 7, U (X, 1)] < +o0.

It follows from Theorem 4.1 that Sthe[o,T2]|Uh - uh(t)| < N. Applying the triangular inequality, we get
U, @), = uC. b, — U, @ —u,t)], . which leads to [U,,(t)]_ =N for t €[0,T,].

From Theorem 3.2, U, (t) blows up at the time Tbh . We deduce from Remark 3.1 and (47) that

e 1L’
\Tb—Tb“\srrb—T2|+\Tb"—T2\s§+Z (“pil) <

which leads us to the desired result.

5. Numerical results
In this section, we present some numerical approximations to the blow-up time of (1)-(3). We use the following
explicit scheme
(n+1) (n) (n) (n) (n)
Ui -U; :Ui+l_2Ui +Uin
At h?

n

i+1

mYin -Uf
' 2h

-U +UMP, 1<i<1 -,

U0(n+1) _Uén) _ 2Ul(n) — 2Uén) + (U (n))P
At h? o

n

um -y 20 -0
At h?

n

+U")",

2 —
where n >0, p>2, At, = min{h?,THUé") i p} with 7 = cont € (0,1).

Also we use the implicit scheme

(n+1) (n) (n+1) (n+1) (n+1) (n+1) (n+1)
Ui -U; :Ui+1 A +Un _U_(n)Ui+1 -Uiy
At h? ' 2h

n

Uo(n+l) _ Uén) _ 2U1Fn+l) _ zuénJrl)
At h?

n

+UMP, 1<i<I -],

+(Ug")",

U I(n+1) _ U I(n) _ 2U I(EII) _ 2U I(n+1) . (U (n)) ]
At h? Lo

n

1—

where N>0, p>2, At, = rHUé”) B " with 7 = cont e (01).

In the tables 1-8, in rows, we present the numerical blow-up times, numbers of iterations, the CPU times and the
orders of the approximations corresponding to meshes of 16, 32, 64, 128, 256, 512, 1024. The numerical blow-up
n-1

time T" =) At; is computed at the first time when At, =‘T T

log((Ta - T )(Ta -T)
log(2) '

<107*°. The order(s) of the method is

computed from S =
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Table 1: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the approximations

obtained with the explicit Euler method

16

32

64

128

256

512

1024

T"
2.003306
2.000827
2.000207
2.000052
2.000013
2.000003

2.000001

15788

60265

229656

873150

3310849

12516533

47158825

CPUtime

63

464

3458

S

1.99

1.99

2.00

2.00

2.00

Table 2: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the approximations

obtained with the implicit Euler method

16

32

64

128

256

512

1024

Second case: Ui(o) =2,p=2and r= h?

T"
2.003906
2.000977
2.000244
2.000061
2.000015
2.000004

2.000001

2

15631

59637

227142

863093

3270629

12355655

46515309

CPUtime

12

89

672

5159

S

2.00

2.00

2.00

2.00

2.00
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Table 3: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the approximations

obtained with the explicit Euler method

16

32

64

128

256

512

1024

"
0.500977
0.500244
0.500061
0.500015
0.500004
0.500001

0.500000

15631

59637

227142

863093

3270629

12355655

46515309

CPUtime

62

457

3407

S

2.00

2.00

2.00

2.00

2.00

Table 4: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the approximations

obtained with the implicit Euler method

16

32

64

128

256

512

1024

2

3-p
Third case: U, :[lj +(1—(ih)2)2, p=2and 7= h

T"
0.500977
0.500244
0.500061
0.500015
0.500004
0.500001

0.500000

15631

59637

227142

863093

3270629

12355655

46515309

CPUtime

12

90

674

5070

2

S

2.00

2.00

2.00

2.00

2.00
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Table 5: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the approximations

obtained with the explicit Euler method

16

32

64

128

256

512

1024

"
0.861878
0.860194
0.859773
0.859668
0.859641
0.859635

0.859633

16031

60831

231919

882201

3347050

12661342

47738061

CPUtime

66

488

3670

S

2.00

2.00

2.00

2.00

2.00

Table 6: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the approximations

obtained with the implicit Euler method

16

32

64

128

256

512

1024

3-p
Fourth case: U, =(lj +(1—(ih)2)2, p=4andr= h

2

T"
0.861680
0.860144
0.859761
0.859665
0.859641
0.859635

0.859633

15961

60832

231919

882201

3347052

12661342

47738061

CPUtime

13

93

699

5294

2

S

2.00

2.00

2.00

2.00

2.00
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Table 7: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the approximations
obtained with the explicit Euler method

| T" n CPUtime | s

16 0.012839 | 4693 - -

32 0.012798 | 17825 - -

64 0.012788 | 67544 - 1.98
128 0.012786 | 255190 3 1.99
256 0.012785 | 960804 18 1.99
512 0.012785 | 3603268 135 1.99
1024 | 0.012785 | 13452596 | 1002 1.99

Table 8: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the approximations
obtained with the implicit Euler method

| T" n CPUtime | s

16 0.012841 | 4694 - -

32 0.012799 | 17825 - -

64 0.012788 | 67545 1 1.98
128 0.012786 | 255190 4 1.99
256 0.012785 | 960804 27 1.99
512 0.012785 | 3603268 197 1.99
1024 | 0.012785 | 13452596 | 1490 1.99

In the following, we also give some plots to illustrate our analysis. For the different plots, we used both explicit and
implicit schemes in the case where I1=16 and p=2. In Figures 1 and 2, we can appreciate that the discrete solution
blows up in a finite time where the initial data is a constant. In Figures 3 and 4, we see that the blow-up is faster
when the initial data is not a constant. The Figures 5, 6, 7 and 8 show the effect of the convection term on the
evolution of the solution. In Figures 9, 10, 11 and 12, we observe that the solution of our problem blows up in a

1
finite time t =~ 2 when the initial data is E and t ~ 0.86 when the initial data is

[%Tp +{-(in}J.
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u(i, n)
u(i, n)

N

x 10

Figure 1: Evolution of the discrete solution(Explicit scheme)  Figure 2: Evolution of the discrete solution(Implicit scheme)

U®=2p=2 u®=2p=2

Figure 3: Evolution of the discrete solution(Explicit schneme)  Figure 4: Evolution of the discrete solution(Implicit scheme)

u,® :GTD +-(@nyf, p=2 u®= [%Tp +-(@n)f, p=2

o

87975 c10®
8.7975¢
879751
879751
3 z
E Bee 257975»
% 87975 %
g 3 8.7975[
N g
87975+ :
87975
87975, 02 0.4 06 08 1
’ node . 579750 02 04 06 08 1
node
Figure 5: Evolution of U(x,t) according to the node Figure 6: Evolution of U(x,t) according to the node
. (0) T (0
(explicit scheme), U," =2, p=2 (implicitscheme), U, =2, p=2
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x10"

3529 x10"
3.5291
3508 A
/\ ssas
/1 /
= 3527 [ i |
z A 3527 [\
—_— \ /| = \ [
5 3.526 ~/ \ [ E] B __,.,_,_,_,«\\//\\ [
€ \/ | 5 3.526 N
S \/ \ W
B v | 5 \ |
E 3525+ \ L v |
E \ E 3.525" \
| x |
g \ 3 ‘
35241 | = \
\ " 3524 .‘
|
3523 | \
| 3.523 |
|
3522 . . ) |
0 0.2 04 06 08 1 3522 L s )
node 0 0.2 04 06 08 1

node

Figure 7: Evolution of U(x,t) according to the node

Figure 8: Evolution of U(x,t) according to the node
(explicit scheme) ,

(implicit scheme),

u® = G)” +i-(@nyf, p=2 u,© :GTP +-(@nyf, p=2

12

x10 x10
9

12

L] ~ @
T i v T

approximation of norm of Ufx,t)
-

w
'

approximation of norm of Ufx,{)
IS

n
v

o 0.5 1 15 2
numerical ime

0.5 1 15 2 25
numerical ime

Figure 9: Evolution of norm of U(x,t) according to the

Figure 10: Evolution of norm of U(x,t) according to the
time (explicit scheme), Ui(o) =2,p=2

time (implicit scheme), Ui(o) =2,p=2

10"

x10
4 4
35 35
7 s Z3
El 2
3 o
£ 28 g 25
] 2
B 2 B 2
s g
Fis g5
] g
a a
§ 1 g 1
05 05
o . . . . . 0 . . . . .
0 01 02 03 04 05 08 07 08 08 o 01 02 03 04 05 06 07 08 09
numerical time

numerical time

Figure 11: Evolution of norm of U(x,t) according

Figure 12 Evolution of norm of U(x,t) according to the time
to the time (explicit scheme),

(implicit scheme),

u® = (%)H +-(@n)2f, p=2 u® = (EJH +-(@n)2f, p=2

2
Remark 5.1

We observe that the blow-up phenomenon occurs faster for the large values of the initial data and the exponent p .
In the case where the initial data is a constant, the solution of our problem blows up in a finite time forall p> 2,
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but slowly. This slowness is due to the absence of the turbulence effect, generated by the convection term.
Therefore the blow-up only depends on the reaction term. When the initial data is not a constant, the convection
term, head of turbulence, accelerates the blow-up created by the reaction term.
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