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Abstract  

This paper concerns the study of the numerical approximation for the following parabolic equations with a 
convection term 
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where 1p . 

We obtain some conditions under which the solution of the semidiscrete form of the above problem blows 
up in a finite time and estimate its semidiscrete blow-up time. We also prove that the semidiscrete blow-
up time converges to the real one, when the mesh size goes to zero. Finally, we give some numerical 
experiments to illustrate ours analysis. 

Keywords: Burgers' equation; semidiscretizations; discretizations; parabolic equations; convection 
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1. Introduction 

Consider the following boundary value problem 
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 1.1 Definition 

We say that the solution  u  of  (1)-(3) blows up in a finite time if there exists a finite time bT  such that 




)(., tu  for  bTt ,0  but 


 )(.,lim tu

bTt . 

The time bT  is called the blow-up time of the solution u . 

The above problem arises in fluid mechanics and is called viscous Burgers' equation in one dimension with a 

reaction term. The solution u(x,t) represents the motion field of the fluid in space and time. Burgers' equation with a 

reaction term is a transport equation with a convection term. The term uux is called convection term. It's a nonlinear 

term that ensures the movement, generates instability and also responsible for the turbulent appearance (here we'll 

refer to it as intermittent since we are in one dimension) when it happens. In the general case the term uxx is replaced 

by uxx with  > 0. The term uxx is the viscous term, which has the opposite effect of slicking and making it appear 

laminar that is ordered. The constant , coefficient of the viscous term, is called the kinematic viscosity (normalized 

by the density) of the fluid. The fluid's flow ability is inversely proportional to the size of the viscosity. The term u
p
 

(the reaction term) is the external force which is generally a white and Gaussian noise within the time scale which 

forces the fluid to flow faster, slower or make it mill around. It's the quantitative relation between the convection 

term and viscous, called Reynolds number that will condition the appearance of the flow in the case when there is 

no external force. The Burgers' equation occurs in various areas of applied mathematics such as modelling of gas 

dynamics and traffic flow. It was in 1939 that the Dutch scientist Johannes Martinus Burgers simplified the Navier-

Stokes equation by just dropping the pressure term (see [2], [23]). 

The theoretical study of blow-up solutions for the parabolic equations with a convection term has been the subject 

of investigations of many authors (see  [3], [6], [7], [8], [9],[19], [20], [21] and the references cited therein). Local 

in time existence and uniqueness of the solution have been proved(see [4], [5], [24], [26] and the references cited 

therein). Here, we are interesting in the numerical study using a semidiscrete form of (1)-(3). We give some 

assumptions under which the solution of a semidiscrete form of (1)-(3) blows up in a finite time and estimate its 

semidiscrete blow-up time. We also show that the semidiscrete blow-up time converges to the theoretical one when 

the mesh size goes to zero. A similar study has been undertaken in [1] and [26]. 

The paper is organized as follows. In the next section, we present a semidiscrete scheme of (1)-(3) and give some 

lemmas which will be used throughout the paper. In section 3, under some conditions, we prove that the solution of 

the semidiscrete form of (1)-(3) blows up in a finite time. In section 4, we study the convergence of the semidiscrete 

blow-up time. Finally, in last section, taking some discrete forms of (1)-(3), we give some numerical 

experiments. 

2. Properties of the semidiscrete scheme 

In this section, we give some lemmas which will be used later. We start by the construction of the semidiscrete 

scheme. Let I be a positive integer and let h=1/I. Define the grid  xi=ih,  0 i  I and approximate the solution  u of 

(1)-(3) by the solution   TIh tUtUtUtU )(),(),()( 10   of the following semidiscrete equations 
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Here,  h

bT,0  is the maximal time interval on which 


)(tUh is finite, where  

)(max)( 0 tUtU iIih 
 . 

When the time 
h

bT  is finite, we say that the solution )(tU h  of (8)-(10) blows up in a finite time, and the time 
h

bT  

is called the blow-up time of the solution )(tU h . 

Lemma 2.1  Let   10 ,,0)(),(  I

hh TCtbta  and  let   11 ,,0)(  I

h TCtV  where 0)()( 0 tVtb hh  , 

such that 
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From (11), we obtain the following inequality 
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It follows from (14)-(18) that 
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is complete. 
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Therefore, we have 
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which contradicts the first strict inequality of the lemma and this end the proof. 

Lemma 2.3 Let )(tU h  be the solution of (7)-(10). Then, we have 
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which implies that 

,0)()(
)(

0000

200  tUtU
dt

tdU p   

,11,0)()()()(
)(

000

0

00

20

0000

0  IitUtUtUtU
dt

tdU
p

iiii

i
  

.0)()(
)(

00

20  tUtU
dt

tdU p

II
I     

But these inequalities contradict (7)-(9) and we obtain the desired result. 

Lemma 2.4  Let )(tUh  be the solution of (7)-(10). Then, we have 
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generality, we may suppose that i0 is the smallest integer which satisfies the above equality. It follows 
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Therefore, we have a contradiction because of (7)-(8). This ends the proof. 

Lemma 2.5  Let )(tUh  be the solution of (7)-(10). Then, we have 
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Proof. Consider the vector )(tZh  with 
dt

tdU
tZ i

i
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)(  , Ii 0 .  Let t0 be the first 0t  such that 

0)( tZi for  0,0 tt  but 0)( 00
tZi  for a certain  Ii ,,00  . Without loss of generality, we may 

suppose that i0 is the smallest integer which satisfies the above equality. We get 
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But these inequalities contradict (7)-(9) and leads to the desired result. 

Lemma 2.6 Let )(tUh  be the solution of (7)-(10). Then, we have, ,2pfor  
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But this inequality contradicts (7) and we obtain the desired result. 

Lemma 2.7 Let     .0,,0 11  
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Proof. Using Taylor's expansion, we get 

,
2

)1(
)( 2

02

2

010

21

00

2  
 ppp

h

pp
UUUpUU   

 

,11,
2

)1(
)(

2

)1(
)( 2

2

2

1

2

2

2

1

212 





 







 Ii
h

pp
UU

h

pp
UUUpUU p

iii

p

iiii

p

i

p

i   

,
2

)1(
)( 2

2

2

1

212 



 
 p

IIII

p

I

p

I
h

pp
UUUpUU   

Where         .,,,,,,,2 111010   IIIiiiiii UUandUUUUUUp   

The result follows taking into account the fact that .0hU  

Lemma 2.8 Let     .0,,0 11  
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Where   ., 11  iii UU  

Using Lemma 2.4 and 0hU , we have the desired result. 

3. Semidiscrete Blow-up solutions 

In this section under some assumptions, we show that the solution Uh of (7)-(10) blows up in a finite time and 

estimate its semidiscrete blow-up time. 

Theorem 3.1 Let Uh be the solution of (7)-(10), then the solution Uh blows up in a finite time 
h

bT with following 

estimate 
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Proof. Consider the following differential equation 
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Introduce the vector )(tVh  such that  .,0,0),()(  TtIittVi   Let the vector )(tZh define as follow 
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The following theorem gives a best result than the previous. 

Theorem 3.2 Let Uh be the solution of (7)-(10).  Suppose that there exists a positive integer  such that 

 

.0),0()0()0()0()0( 02 IiUUUUU p

i

p

iiii                                                                              (27) 

Then, the solution Uh  blows up in a finite time 
h

bT  and we have the following estimate 

.
)1(

)0(1
1








p

U
T

p

hh

b


 

Proof. Let  h

pT,0  be the maximal time interval on which 


)(tUh . Our aim is to show that 
h

bT  is finite 
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Using Lemma 2.8 we get 
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4. Convergence of the semidiscrete blow-up time 

In this section, under some assumptions, we show that the semidiscrete blow-up time converges to the real one 

when the mesh size goes to zero. In order to obtain the convergence of semidiscrete blow-up time, we firstly prove 

the following theorem about the convergence of the semidiscrete scheme. 

Theorem 4.1 Assume that (1)-(3) has a solution    ),01,0(1,4 TCu   and the initial condition at (10) satisfies 
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)1()0(0 ouU hh 


 as 0h ,                                                                                                                         (31) 

Where 
T

Ih txutxutu )),(,),,(()( 0  . Then, for h sufficiently small, the problem (7)-(10) has a unique 

solution    11 ,,0  Ih

bh TCU  such that 

))0(()()(max 20

0 huUOtutU hhhhTt 
  as  0h .                                                                 (32) 

Proof.  Let K  0 be such that 

.Ku 


                                                                                                                                                                (33) 

The problem (7)-(10) has for each h, a unique solution   11 ,,0  Ih

bh TCU . Let t(h) the greatest 

value of t>0 such that 

1)()( 


tutU hh  for   )(,0 htt .                                                                                                               (34) 

The relation (31) implies that t(h)>0 for h sufficiently small. Let  Ththt ),(min)( 
. By the triangular 

inequality, we obtain 


 )()()(.,)( tutUtutU hhh  for   )(,0 htt  , 

which implies that  

KtUh 


1)(  for   )(,0 htt  .                                                                                                                    (35) 

Let )()()( tutUte hhh   be the error of discretization. Using Taylor's expansion, we have for   )(,0 htt  , 
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where    .,...,0),(),( IifortxutU iii    

Using (35), there exists a constant M>0 such that 
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Consider the vector Wh such that 

))0(()( 20)1( MhuUetW hh
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i 



, Ii 0 . 

A direct calculation yields 
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It follows from Lemma 2.2 that  

)()( tetW ii   for  )(,0 htt  , Ii 0 .  

By the same way, we also prove that  

)()( tetW ii   for  )(,0 htt  , Ii 0 ,  

which implies that 

)()( tetW ii   for  )(,0 htt  , Ii 0 .  

We deduce that 
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Let us show that Tht  )( . Suppose that )(> htT 
. From (34), we obtain 
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TM
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.                                                                      (43) 

Since ,00))0(( 20)1( 


 hwhenMhuUe hh

TM
 we deduce from (43) that 10, which is impossible. 

Consequently Tht  )( , and we conclude the proof. 

Theorem 4.2 Suppose that the solution u of (1)-(3) blows up in a finite time bT  such that     bTCu ,01,01,4    

and the initial condition at (10) satisfies 

)1()0(0 ouU hh 


 as 0h .                                                                                                                        (44) 

Assume that there exists a constant   >0 such that 
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Then the solution Uh of (7)-(10) blows up in a finite time  
h
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bh TT 0lim .                                                                                                                                                     (46)  
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Since    ),(maxlim 1,0 txuxTt b
, then, there exists T1 such that 
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It follows from Theorem 4.1 that   .)()(sup
2,0 NtutU hhTt   Applying the triangular inequality, we get 
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which leads us to the desired result. 

5. Numerical results 

In this section, we present some numerical approximations to the blow-up time of (1)-(3). We use the following 

explicit scheme 
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Also we use the implicit scheme 
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In the tables 1-8, in rows, we present the numerical blow-up times, numbers of iterations, the CPU times and the 

orders of the approximations corresponding to meshes of 16, 32, 64, 128, 256, 512, 1024. The numerical blow-up 

time 





1

0

n

j

j

n tT  is computed at the first time when 
161 10  nn

n TTt . The order(s) of the method is 

computed from 4h 2h 2h hlog((T  - T )/(T  - T ))
s =

log(2)
. 
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First case:  .
2

2,
2

1 2
)0( h

andpUi    

Table 1: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the approximations 

obtained with the explicit Euler method 

 

I nT  n CPUtime s 

16 2.003306 15788 - - 

32 2.000827 60265 - - 

64 2.000207 229656 2 1.99 

128 2.000052 873150 9 1.99 

256 2.000013 3310849 63 2.00 

512 2.000003 12516533 464 2.00 

1024 2.000001 47158825 3458 2.00 

 

Table 2: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the approximations 

obtained with the implicit Euler method 

I nT  n CPUtime s 

16 2.003906 15631 - - 

32 2.000977 59637 - - 

64 2.000244 227142 2 2.00 

128 2.000061 863093 12 2.00 

256 2.000015 3270629 89 2.00 

512 2.000004 12355655 672 2.00 

1024 2.000001 46515309 5159 2.00 

 

Second case:  .
2

2,2
2

)0( h
andpUi    
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Table 3: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the approximations 

obtained with the explicit Euler method 

I nT  n CPUtime s 

16 0.500977 15631 - - 

32 0.500244 59637 - - 

64 0.500061 227142 2 2.00 

128 0.500015 863093 9 2.00 

256 0.500004 3270629 62 2.00 

512 0.500001 12355655 457 2.00 

1024 0.500000 46515309 3407 2.00 

 

Table 4: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the approximations 

obtained with the implicit Euler method 

I nT  n CPUtime s 

16 0.500977 15631 - - 

32 0.500244 59637 - - 

64 0.500061 227142 2 2.00 

128 0.500015 863093 12 2.00 

256 0.500004 3270629 90 2.00 

512 0.500001 12355655 674 2.00 

1024 0.500000 46515309 5070 2.00 

 

Third case:     .
2

2,1
2

1 2
22

3

)0( h
andpihU

p
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Table 5: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the approximations 

obtained with the explicit Euler method 

I nT  n CPUtime s 

16 0.861878 16031 - - 

32 0.860194 60831 - - 

64 0.859773 231919 1 2.00 

128 0.859668 882201 9 2.00 

256 0.859641 3347050 66 2.00 

512 0.859635 12661342 488 2.00 

1024 0.859633 47738061 3670 2.00 

 

 

Table 6: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the approximations 

obtained with the implicit Euler method 

I nT  n CPUtime s 

16 0.861680 15961 - - 

32 0.860144 60832 - - 

64 0.859761 231919 2 2.00 

128 0.859665 882201 13 2.00 

256 0.859641 3347052 93 2.00 

512 0.859635 12661342 699 2.00 

1024 0.859633 47738061 5294 2.00 

 

Fourth case:     .
2

4,1
2

1 2
22

3

)0( h
andpihU

p
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Table 7: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the approximations 

obtained with the explicit Euler method 

I nT  n CPUtime s 

16 0.012839 4693 - - 

32 0.012798 17825 - - 

64 0.012788 67544 - 1.98 

128 0.012786 255190 3 1.99 

256 0.012785 960804 18 1.99 

512 0.012785 3603268 135 1.99 

1024 0.012785 13452596 1002 1.99 

 

 

Table 8: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the approximations 

obtained with the implicit Euler method 

I nT  n CPUtime s 

16 0.012841 4694 - - 

32 0.012799 17825 - - 

64 0.012788 67545 1 1.98 

128 0.012786 255190 4 1.99 

256 0.012785 960804 27 1.99 

512 0.012785 3603268 197 1.99 

1024 0.012785 13452596 1490 1.99 

 

In the following, we also give some plots to illustrate our analysis. For the different plots, we used both explicit and 

implicit schemes in the case where I=16 and p=2. In Figures 1 and 2, we can appreciate that the discrete solution 

blows up in a finite time where the initial data is a constant. In Figures 3 and 4, we see that the blow-up is faster 

when the initial data is not a constant. The Figures 5, 6, 7 and 8 show the effect of the convection term on the 

evolution of the solution. In Figures 9, 10, 11 and 12, we observe that the solution of our problem blows up in a 

finite time 2t when the initial data is 
2

1
and 86.0t when the initial data is 

   .1
2

1 22

3

ih

p
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Figure 1: Evolution of the discrete solution(Explicit scheme) 

2,2
)0(

 pU i  

 

Figure 2: Evolution of the discrete solution(Implicit scheme) 
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)0(

 pU i  

 
 

  

Figure 3: Evolution of the discrete solution(Explicit scheme) Figure 4: Evolution of the discrete solution(Implicit scheme) 
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Figure 5: Evolution of U(x,t) according to the node  

(explicit  scheme) ,     2,2
)0(

 pU i  

Figure 6: Evolution of U(x,t) according to the node 

 (implicit scheme),       2,2
)0(

 pU i  



Journal of Progressive Research in Mathematics(JPRM)                                                                                                                                                            

ISSN: 2395-0218     

 
Volume 5, Issue 2 available at www.scitecresearch.com/journals/index.php/jprm                                                   516  

 
 

Figure 7: Evolution of U(x,t) according to the node  

        (explicit  scheme) ,    

Figure 8: Evolution of U(x,t) according to the node 

        (implicit scheme), 
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Figure 9: Evolution of norm of U(x,t) according to the 

  time  (explicit scheme), 2,2
)0(

 pU i  

Figure 10: Evolution of norm of U(x,t) according to the 

         time  (implicit scheme), 2,2
)0(

 pU i  

 

                              

Figure 11: Evolution of norm of U(x,t) according    

 to the time  (explicit scheme),                     
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1 22
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Figure 12 Evolution of norm of U(x,t) according to the time  

(implicit scheme),  

   2,1
2

1 22

3

)0(
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p
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Remark 5.1  

We observe that the blow-up phenomenon occurs faster for the large values of the initial data and the exponent p . 

In the case where the initial data is a constant, the solution of our problem blows up in a finite time for all ,2p  
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but slowly. This slowness is due to the absence of the turbulence effect, generated by the convection term. 

Therefore the blow-up only depends on the reaction term. When the initial data is not a constant, the convection 

term, head of turbulence, accelerates the blow-up created by the reaction term. 
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