

Volume 5, Issue 2

Published online: September 09, 2015

Journal of Progressive Research in Mathematics www.scitecresearch.com/journals

# On δ-Small Pseudo Projective Modules

Nuhadsalim Al-Mothafar

Department of mathematics, College of science, University of Baghdad. Baghdad-Iraq

#### **Abstract**

In this paper we give three new concepts, a concepts of  $\delta$ -Small pseudo projective module,  $\delta$ -small quasi projective and  $\delta$ -small pseudo stable module, these concepts are generalization of Pseudo Projective modules, quasi projective module and pseudo stable module respectively we will study these concepts and give some results.

**Keywords:**  $\delta$ -Small pseudo projective module;  $\delta$ -small quasi projective module;  $\delta$ -small pseudo stable module.

# حول المقاساتللاسقاطية الزائفة من النمط 6الصغير

# د. نهاد سالم المظفر

قسم الرياضيات , كلية العلوم , جامعة بغداد , بغداد , العراق .

#### الخلاصة

في هذا البحث نعطي ثلاث مفاهيم جديده ومفمهوم المقاس الاسقاطي الزائف من النوع  $\delta$  الصغير ومفمهوم المقاس الاسقاطي الظاهري من النوع  $\delta$  الصغير . هذه المفاهيم هي تعاميم لمفاهيم المقاس الاسقاطي شبه المستقر من النوع على التوالي. سندرس هذه المفاهيم المقاس الاسقاطي شبه المستقر على التوالي. سندرس هذه المفاهيم ونعطي بعض النتائج.

#### 1. Introduction

All rings in this paper are commutative rings with identity, and all modules are unitary left R-modules. Let M be an R-module. A submodule A of M is called essential if every nonzero submodule of M has anonzero intersection with A, [1]. If A is a submodule of M, then the annihilator of A is defined as  $Ann(A) = \{r \in R \mid rA = 0\}$ , [1]. If M is R-module, then  $Z(M) = \{x \in M : Ann(A) \subseteq_{\epsilon} R\}$  is called the singular submodule of M. If Z(M) = M, then M is called the singular module, [1]. A submodule A of A is a singular module of A. If A is a submodule A of A is a submodule A of A is a singular module [2]. A submodule A of A is a module A is a singular module [2]. A submodule A of a module A is a singular module A is a submodule A of A is a singular module A. If A is a submodule A is a singular module A is a submodule A of A is a singular module A. If A is a submodule A is a singular module A is a submodule A of A is a singular module A is a singular module A. If A is a submodule A is a singular module A is a submodule A of an R-module A is a singular module A is a singular module A in A. There exists a homomorphism A is a singular module A in A is a singular module A in A

ISSN: 2395-0218

M is fully invariant, then M is called a duo-module, [7].Let M and N bean R-modules. An epimorphism  $g: M \to N$  is said to be δ-small epimorphism, if  $kerg \ll_\delta M$ , [8].

# 2. Preliminary Notes

**Definition (2.1):** An R-module M is said to be  $\delta$ -small quasi projective if for any given module A, any  $\delta$ -small epimorphism  $g: M \to A$ , any homomorphism  $f: M \to A$  can be lifted to an endomorphism h of M such that the following diagram is commutative;



i.e.  $g \circ h = f$ .

**Definition** (2.2): An R-module M is said  $\delta$ -small pseudo projective module if for any module A, with  $\delta$ -small epimorphism  $g: M \to A$  and epimorphism  $f: M \to A$ , there exists an hinEnd(M) such that the following diagram is commutative:



i.e.g  $\circ$  h = f.

**Definition (2.3):** A submodule N of an R-module M is said to be  $\delta$ -small pseudo stable module if for any epimorphism  $f: M \to A$  and any  $\delta$ -small epimorphism  $g: M \to A$  with  $N \subseteq Ker g \cap Ker f$ , there exists h in End(M) such that  $f = g \circ h$ , then  $h(N) \subseteq N$ .

#### **Examples (2.4):**

- 1.  $Z_2$  as Z-module is  $\delta$ -small quasi projective but not projective.
- **2.** *Q*as*Z*-module is not quasi projective.
- 3.  $Z_6$  as Z-module is  $\delta$ -small pseudo projective but not projective.
- 4.
- 5.

### 3. Main Results

**Proposition** (3.1): Let M be a  $\delta$ -hollow module the following are equivalent:

- (i) M is  $\delta$ -small pseudo projective.
- (ii)Mis pseudo projective.

**Proof:**(i)  $\Rightarrow$  (ii) Let M be a  $\delta$ -small pseudo projective module and A be any module.and  $f, g : M \rightarrow A$  are epimorphisms. Since M is  $\delta$ -hollow module, then kerg is  $\delta$ -small submodule of M, So g is  $\delta$ -small epimorphism. Thus, by (i) there exist ahomomorphism h in End (M) such that  $f = g \circ h$ , therefore M ispseudo projective. (ii)  $\Rightarrow$  (i) clear from definition.

**Proposition** (3.2): Let M be a  $\delta$ -small pseudo projective module and  $g: M \to N$  be a  $\delta$ -small epimorphism then there exists a homomorphism h in End(M) such that  $Ker g = Ker(g \circ h)$  is  $\delta$ -small pseudo stable under h.

**Proof:**Since  $g: M \to N$  is  $\delta$ -small epimorphism, then  $M/kerg \cong N$ . Let  $g*: M/kerg \to N$  be an isomorphism, Let  $\pi: M \to M/Kerg$  be the natural epimorphism. Since M is  $\delta$ -small pseudo projective, then there exists a homomorphism h in End(M) such that the following diagram commutative:



i.e.  $g * \circ \pi = g \circ h$ .

Now, let  $x \in kerg \Rightarrow x \in ker\pi \Rightarrow \pi(x) = 0$ 

$$\Rightarrow g * \circ \pi(x) = 0 \Rightarrow g \circ h(x) = 0 \Rightarrow x \in kerg \circ h \Rightarrow kerg \subseteq kerg \circ h$$

On the other hand if  $y \in kerg \circ h \Rightarrow g \circ h(y) = 0 \Rightarrow g * \circ \pi(y) = 0 \Rightarrow \pi(y) \in kerg * and since g * is one - one <math>\Rightarrow \pi(y) = 0 \Rightarrow y \in ker\pi = kerg$ . Therefore  $kerg = kerg \circ h$ .

Now, let  $z \in kerg \Rightarrow g(z) = 0 \Rightarrow g \circ h(z) = 0 \Rightarrow g(h(z) - z) = 0 \Rightarrow h(z) - z \in kerg \Rightarrow h(z) \in kerg \Rightarrow h(kerg) \subseteq kerg$ .

**Proposition** (3.3): Let M be a  $\delta$ -small pseudo projective module, K be a  $\delta$ -small submodule of M if K is stable under End(M), then M/K is  $\delta$ -small pseudo projective.

**Proof**: Let  $f: M/K \to A$  be an epimorphism,  $g: M/K \to A$  be a  $\delta$ -small epimorphism and  $v: M \to M/K$  be the natural epimorphism where A is any R- module. Since M is  $\delta$ -small pseudo projective Then there exist h in End (M) such that the following diagram commutatives:



i.e.  $g \circ v \circ h = f \circ v$ . Define  $h^*: M/K \to M/K$  by  $h^*(x+K) = h(x) + K$ . Its clear that  $h^*$  is well define and homomorphism.

Now 
$$h^{*\circ}v = v \circ h \Rightarrow g \circ h^{*\circ}v = g \circ v \circ h \Rightarrow g \circ h^{*\circ}v = f \circ v$$

But v is onto  $\Rightarrow g \circ h^* = f$ , thus M/K is  $\delta$ -small pseudo projective.

**Proposition** (3.4):Let M be a  $\delta$ -small pseudo projective module and  $g: M \to N$  be a  $\delta$ -smallepimorphism, then N is  $\delta$ -small pseudo projective.

**Proof**:Since  $g: M \to N$  is an epimorphism, then  $M/kerg \cong N$ , but M/kerg is  $\delta$ -small pseudo projective (Proposition 3.3), therefore N is  $\delta$ -small pseudo projective.

**Proposition** (3.5):If T is a  $\delta$ -small pseudo stable submodule of a  $\delta$ -small quasi projective module Q and A is a submodule of T, then T/A is a  $\delta$ -small pseudo stable submodule of Q/A.

**Proof:**Let  $f: Q/A \to B$  be epimorphism,  $g: Q/A \to B$  be a  $\delta$ -small epimorphism with  $T/A \subseteq kerf \cap kerg$  such that there exists h in End(Q/A) satisfying  $f = g \circ h$ . Let  $v: Q \to Q/A$  be the natural epimorphism, then since Q is  $\delta$ -small quasi projective, there exists a homomorphism  $h^*$  in End(Q) such that the following diagram commutatives:



i.e. 
$$h \circ v = v \circ h^* \Rightarrow f \circ v = g \circ h \circ v = g \circ v \circ h^*$$
.

Since we have 
$$f \circ v(T) = f(T/A) = 0$$

and 
$$g \circ v(T) = g(T/A) = 0$$
.

Therefore  $T \subseteq ker \ f \circ v \cap ker \ g \circ v$ . But T is  $\delta$ -small pseudo stable and hence  $h^*(T) \subseteq T$ . it follows that  $h(T/A) = h \circ v \ (T) = v \circ h^*(T) \subseteq v(T) = T/A$ .

ISSN: 2395-0218

Thus T/A is  $\delta$ -small pseudo stable submodule of Q/A.

**Proposition (3.6):** Let Q be a  $\delta$ -small quasi projective module and T be a  $\delta$ -small pseudo stable submodule of Q. If C containing T, is not a  $\delta$ -small pseudo stable submodule of Q/T.

**Proof:** Let  $h: Q \to A$  be an epimorphism,  $g: Q \to A$  be a  $\delta$ -small epimorphism and Let C be not  $\delta$ -small pseudo stable in Q, then there exists  $f \in End(Q)$ ,  $C \subseteq kerg \cap kerh$  with following diagram is commutative:



i.e.  $h = g \circ f$  such that  $f(x) \notin C$  for some  $x \in C$ . Let  $v : Q \to Q/T$  be the natural epimorphism.

Define  $F: Q/T \rightarrow Q/T$  by F(q + T) = f(q) + T. so  $F \circ v = v \circ f$ .

Its clear that F is well define and homomorphism. And  $F(x+T)=f(x)+T\notin C/T$ . Now since  $T\subseteq kerg\cap kerh$ , then there exists G and G in G in G in G in G in G and G in G in G and G in G in

Now  $h = g \circ f \Rightarrow H \circ v = G \circ v \circ f = G \circ F \circ v$ . And since v is epimorphism therefore  $H = G \circ F$ . So we have  $H(C/T) = H \circ v(C) = h(C) = 0$ , similary G(C/T) = 0. Therefore  $C/T \subseteq kerH \cap kerG$ . But  $F(x + T) \notin C/T$ . And hence C/T is not  $\delta$ -small pseudo stable.

**Proposition (3.7):** Let M be a  $\delta$ -small pseudo projective module,  $g: M \to N$  is any  $\delta$ -small epimorphism, then Kerg is a  $\delta$ -small pseudo stable submodule of M.

**Proof:** Since  $g: M \to N$  be a  $\delta$ -small epimorphism, then  $M/kerg \cong N$ , Let  $g^*: M/kerg \to N$  be an isomorphism,  $f: M \to M/kerg$  be the natural epimorphism, then  $kerg \subseteq kerg \cap ker g^* \circ f$ . since M is  $\delta$ -small pseudo projective, there exists h in End (M) such that the following diagram commutatives:



i.e. 
$$g^* \circ f = g \circ h$$
.

Now, if  $h(kerg) \not\subset kerg$ , then there exists  $x \in kerg$  such that  $h(x) \in h(kerg)$  and  $h(x) \notin kerg$ .

Now  $0 \neq g \circ h(x) = g^* \circ f(x) = 0$ , which is a contradiction, since  $kerg \subseteq ker g^* \circ f$ , thus kerg is  $\delta$ -small pseudo stable.

**Proposition** (3.8):Let M be a  $\delta$ -small pseudo projective module, A and B be invariant submodules of M. Then  $A \cap B$  is a  $\delta$ -small pseudo stable submodule of M if either A or B is  $\delta$ -small in M.

**Proof:**Let A be  $\delta$ -small in M,  $g: M/A \to T$  be any  $\delta$ -small epimorphism,  $f: M/A \to T$ . be any epimorphism, where T is any R-module and  $v: M \to M/A$  be the natural epimorphism. Then  $\cap B \subseteq Ker g \circ v \cap Ker f \circ v$ . Since M is  $\delta$ -small pseudo projective, then there exists h in End (M) such that the following diagram commutatives:



i.e.  $f \circ v = g \circ v \circ h$ .now since  $h(A \cap B) \subseteq h(A) \subseteq A$  and  $h(A \cap B) \subseteq h(B) \subseteq B$  since A and B are invariant submodules, Thus  $h(A \cap B) \subseteq A \cap B$ . Hence  $A \cap B$  is  $\delta$ -small pseudo stable.

# **References:**

- [1] Goodearl, K.R.1976. Ring theory, Non-Singular Rings and Modules, Mercel Dekker, New York.pp.
- [2] Zhou, Y. 2000. Generalization of Perfect, Semiperfect and Semiregular Rings, Algebra colloquium, 7:3.305-318.
- [3] Nematollahi, M. J. 2009. On δ-supplemented modules, TarbiatMoallem University, 20th Seminar on Algebra, 2-3 Ordibehesht, 1388 (Apr. 22-23, 2009) pp 155-158.
- [4] Azumaya, G. Mbuntum, F. and Varadarajan, K. On M-Projective and M-Injective Modules, Pacific J. Math 95 (1973), 9-16.
- [5] Wisbauer, R. Foundations of Modules and Rings Theory, Gordan and Breach Reading 1991.
- [6] Tiwary, A.K. and Pandeya, B.M. Pseudo Projective and Pseudo Injective Modules, Indian J. of pure appl. Math., Vol. 9, No. 9(1978), pp. 941-949.
- [7] Faith, Algebra I, Rings, Modules and Categories, Springer Verlag, New York, 1981.
- [8] N. S. Almothafar and S. M. Yassin, On δ-small projective module, Iraqi Journal of science, vol 54 (2013), pp 855-860.