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Abstract 

 
In this paper, the finite difference method is applied to the optimal control problem of system stationary 
equation of Quasi-Optic. The optimal control problem has been covered to finite dimensional optimization 
problem and difference approximations are obtained. The estimation of stability of difference scheme is 
proved.  
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1. Introduction 

 
Optimal control theory play an important role in many area in science and engineeering. The optimal control 

problems governed by schrödinger equation is one of those areas. Quasi optic equation is a form of the Schrödinger 

equation with complex potential. Such problems have arise various branches of non-linear optic, modern physics 

and quantum mechanic. These problems have been studied by many  researchers in [1-7]. Difference methods for 

such  control problems are investigated in studies [11-13].  

 

In this paper, we prove the stability estimate of difference approximations of the optimal control problem governed 

by quasi optic equation with control in coefficient. The set of admissible controls is a set of square integrable 

functions.  Considered the optimal control problem differs from previous studies because of its statement and cost 

functional.  

 
2. Formulation of the problem and its difference scheme 

 
Let us consider the problem of finding the minimum of the functional 

 

                                                                                                                    (1) 

in the set 
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subject to 

 

, (2) 

, ,    ,        (3)                                

 ,  ,      (4)                                                                                 

  

where  is a wave function,   ,  ( ) are given 

numbers, a(x) is a measurable bounded function that satisfies the following conditions: 

 

 
 

  and   are given functions that satisfy the condition  

 

 

The spaces  are Sobolev spaces defined as in Ladyzenskaja et al. (1968). 

In study [14], it was shown that the problem (1) to (4) has unique solution for each v ∈ V and the following 

estimation is valid for this solution 
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for each .  

Now, we shall find approximation of the optimal control problem (1) to (5). For discretization, let us transform the 

region Ω into the following scheme:  

 

 ,    ,  ,  ,  ,  

 ,  , ,  . 

and let us write the following assignments: 

 

 

 
 

 

For the arbitrary natural number, n ≥ 1, let us consider the minimizing problem of the function  

 

 
in the set  

 

subject to 

 

 ,                                         (10) 

  ,                                              (11) 

 .                                           (12) 

where the scheme functions  are defined by 
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As we have seen discrite problem (8)- (12) is the same as problem (1)- (5). Hence the problem (8)- (12) has at least 

solution.  

3. The Stability Theorem  

In this section, we shall show the stability estimate for the problem (8)- (12). 

Theorem 3.1: For each , the stability of the difference scheme (8) -(12) satisfies the following estimation: 

 

where > 0 is a constant that does not depend on τ and h. 

 

Proof : It is clear that the following identity is valid for  : 

 

 

 

 

 

 

where the functions   are the complex conjugate of any functions  ,  defined in the scheme 

 such that  . Let take functions ,    instead of functions 

   in this identity and then, subtracting its complex conjugate from obtained equality, we get the 

following equation: 

 



Journal of Progressive Research in Mathematics(JPRM)                                                                                                                                                            

ISSN: 2395-0218    

 
Volume 5, Issue 2 available at www.scitecresearch.com/journals/index.php/jprm                                                   491  

 

 

 . 

If we use equation (20) 

 

+         (20) 

 

we obtain  

 

 

 

Summing this equality in  from 1 to  and applying 's inequality, we obtain 

 

 

The last inequality is written for  as follows: 

 

 

 

Considering that  second term of the left side of the inequality (23) is not negative we get the following inequality:  

 

                                                                            (24). 
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Using Gronwall's lemma in study [15] the inequaliy (24), we get the estimation  

 

where   does not depend on  and  Thus, the proof is completed. 
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