

RESEARCH ORGANISATION| Published online: August 08, 2015|

SCITECH Volume 4, Issue 4

Journal of Progressive Research in Mathematics www.scitecresearch.com/journals

> **An algebraic proof of Fermat's last theorem**

James E. Joseph Department of Mathematics Howard University Washington, DC 20059.

Abstract:

In 1995, A, Wiles announced, using cyclic groups, a proof of Fermat's Last Theorem, which is stated as follows: If π is an odd prime and x, y, z are relatively prime positive integers, then $z^{\pi} \neq x^{\pi} + y^{\pi}$. In this note, a proof of this theorem is offered, using elementary Algebra. It is proved that if π is an odd prime and x, y, z are positive inyegera satisfying $z^{\pi} = x^{\pi} + y^{\pi}$, then x, y, and z are each divisible by π .

Key words and phrases: Fermat.

2010 Mathematics Subject Classification: Primary 11Yxx.

The special case $z^4 = x^4 + y^4$ is impossible for rekatively prime integers x, y, z [1]; it is only necessary to show that if x, y, z, are relatively prime positive integers, π is an odd prime, $z^{\pi} \neq x^{\pi} + y^{\pi}$. If x and π are positive integers, the notation $x \equiv 0 \pmod{\pi}$ will mean x is divisible by π . Let $C(\pi, k)$ represent the k^{th} coefficient of the binomial expansion of $(x + y)^{\pi}$; if π is prime, then $C(\pi, k) \equiv 0 \pmod{\pi}$ for every $1 < k < \pi$.

Theorem 1. If x, y, z are positive integers, π an odd prime and $x^{\pi} + y^{\pi} = z^{\pi}$, then $x \equiv 0 \pmod{\pi}$, $y \equiv 0 \pmod{\pi}, z \equiv 0 \pmod{\pi}.$

Theorem 1 is arrived at as a result of two Lemmas.

Lemma 1. *If* x, y, z are positive integers, π an odd prime, and $z^{\pi} = x^{\pi} + y^{\pi}$, then

- (1) $(x+y)^{\pi} z^{\pi} \equiv 0 \pmod{\pi}$;
- (2) $(z-x)^{\pi} y^{\pi} \equiv 0 \pmod{\pi}$;
- (3) $(z y)^{\pi} x^{\pi} \equiv 0 \pmod{\pi}$;
	- (4) $x + y z \equiv 0 \pmod{\pi}$;
- (5) $(x+y)^{\pi} z^{\pi} \equiv 0 \pmod{\pi^2};$
- (6) $(z-x)^{\pi} y^{\pi} \equiv 0 \pmod{\pi^2};$
- (7) $(z-y)^{\pi} x^{\pi} \equiv 0 \pmod{\pi^2};$

(8) $x + y - z \neq 0$.

Proof. Using the equation $z^{\pi} = x^{\pi} + y^{\pi}$, statemente (1), (2), and (3) are obvious; (4), (5), (6), and (7) come from the equations

$$
(eq.1) \ (x+y)^{\pi} - z^{\pi} - (x+y-z)^{\pi} = \sum_{1}^{\pi-1} C(\pi,k)(x+y-z)^{\pi-k} z^{k};
$$
\n
$$
(eq.2) \ (z-y)^{\pi} - x^{\pi} - (z-x-y)^{\pi} = \sum_{1}^{\pi-1} C(\pi,k)(z-x-y)^{\pi-k} x^{k};
$$
\n
$$
(eq.3) \ (z-x)^{\pi} - y^{\pi} - (z-x-y)^{\pi} = \sum_{1}^{\pi-1} C(\pi,k)(z-x-y)^{\pi-k} y^{k};
$$

and the fundamental theorem of Arithmetic; (8) is obvious. leading to $xy = 0$.

Lemma 2. If π is an odd prime and x, y, z are positive integers such that $z^{\pi} = x^{\pi} + y^{\pi}$, then

- (1) $xy \equiv 0 \pmod{\pi}$;
- (2) $yz \equiv 0 \pmod{\pi}$;
- (3) $xz \equiv 0 \pmod{\pi}$.

Proof.

$$
(x+y)^{\pi} - z^{\pi} = \sum_{1}^{\pi-1} C(\pi,k) x^{\pi-k} y^k \equiv 0 \pmod{\pi^2};
$$

there is a k with $C(\pi, k)x^{\pi-k}y^k \equiv 0 \pmod{\pi^2}$; order $C(\pi, k)x^{\pi-k}y^k$ by inclusion and there exists k such that $C(\pi, k) x^{\pi-k} y^k \equiv 0 \pmod{\pi^2};$

$$
(F1) x^{\pi-k} y^k \equiv 0 \pmod{\pi};
$$

multiplying by $x^k y^{\pi-k}$ gives $(xy)^{\pi} \equiv 0 \pmod{\pi}$ which implies

$$
(F1^*) \quad xy \equiv 0 \ (mod \ \pi).
$$

$$
(z-y)^{\pi} - x^{\pi} = \sum_{n=1}^{\pi-1} C(\pi,k)(-1)^{k} y^{\pi-k} z^{k} \equiv 0 \ (mod \ \pi^{2});
$$

there is a k with $C(\pi, k) y^{\pi-k} z^k \equiv 0 \pmod{\pi^2}$; order $C(\pi, k) y^{\pi-k} z^k$ by inclusion and there exists k such that $C(\pi, k) y^{\pi-k} z^k \equiv 0 \pmod{\pi^2};$

$$
(F2) \ \ y^{\pi-k} z^k \equiv 0 \ (mod \ \pi);
$$

multiplying by $y^k z^{\pi-k}$ gives $(yz)^{\pi} \equiv 0 \pmod{\pi}$ which implies

$$
(F2^*) \quad yz \equiv 0 \pmod{\pi}.
$$

$$
(z-x)^{\pi} - x^{\pi} = \sum_{1}^{\pi-1} C(\pi, k)(-1)^{k} x^{\pi-k} z^{k} \equiv 0 \pmod{\pi^{2}};
$$

there is a k with $C(\pi, k)x^{\pi-k}z^k \equiv 0 \pmod{\pi^2}$; order $C(\pi, k)x^{\pi-k}z^k$ by inclusion and there exists k such that $C(\pi, k)x^{\pi-k}z^k \equiv 0 \pmod{\pi^2};$

$$
(F3) x^{\pi-k} z^k \equiv 0 \pmod{\pi};
$$

multiplying by $x^k z^{\pi-k}$ gives $(xz)^{\pi} \equiv 0 \pmod{\pi}$ which implies

$$
(F3^*) \quad xz \equiv 0 \ (mod \ \pi).
$$

The last three equivalences $(F1^*), (F2^*), (F3^*)$, along with $x + y - z \equiv 0 \pmod{\pi}$ complete the proof.

Fermat's Last Theorem. If π is an odd prime and x, y, z are relatively prime positive integers, then $z^{\pi} \neq x^{\pi} + y^{\pi}$.

Proof. If π is an odd prime. then $z \equiv 0 \pmod{\pi}$; $y \equiv 0 \pmod{\pi}$, $z \equiv 0 \pmod{\pi}$.

References

[1] H. Edwards, *Fermat's Last Theorem:A Genetic Introduction to Algebraic Number Theory*, Springer-Verlag, New York, (1977).

[2] A. Wiles, *Modular ellipic eurves and Fermat's Last Theorem*, Ann. Math. 141 (1995), 443-551.

multiplying by $x^2 z^{x-1} = \frac{1}{2} \arctan \frac{z}{2}$, $\frac{z}{2}$ [3] A. Wiles and R. Taylor, *Ring-theoretic properties of certain Heche algebras*, Ann. Math. 141 (1995), 553-573.******Order $C(\pi, k)x^{\pi-k}y^k$ by magnitude and there exists *k* such that $C(\pi, k) x^{\pi-k} y^k \equiv 0 \pmod{\pi^2}$ ****Wiles and R. Taylor, Ring-theoretic properties of certain Heche algebras, Ann. Math. 141 (1995), 553-573. *****

$$
(x+y)^{\pi} - z^{\pi} = \sum_{0}^{\pi-1} C(\pi,k)(x+y-z)^{\pi-k} z^{k};
$$

$$
(x+y)^{\pi} - z^{\pi} = \sum_{0}^{\pi-1} C(\pi,k)(x+y-z)^{\pi-k} z^{k};
$$

$$
(x+y-z)^{\pi} + \pi(x+y-z)z^{\pi-1} \equiv 0 \ (mod \ \pi^2);
$$

$$
(x+y-z)^{\pi-2}+z^{\pi-1}\equiv 0 \ (mod \ \pi);
$$

$$
z^{\pi-1} \equiv 0 \ (mod \ \pi);
$$

$$
z \equiv 0 \ (mod \ \pi).
$$

$$
(z-y)^{\pi} - x^{\pi} = \sum_{0}^{\pi-1} C(\pi,k)(z-x-y)^{\pi-k} x^{k};
$$

$$
(z - y)^{\pi} - x^{\pi} = \sum_{0} C(\pi, k)(z - x - y)^{\pi - k} x^{k};
$$

\n
$$
(z - x)^{\pi} - y^{\pi} = \sum_{0}^{\pi - 1} C(\pi, k)(z - x - y)^{\pi - k} x^{k};
$$

\n
$$
(z - x - y)^{\pi} + \pi(z - x - y)x^{\pi - 1} \equiv 0 \pmod{\pi^2};
$$

\n
$$
(z - x - y)^{\pi - 2} + x^{\pi - 1} \equiv 0 \pmod{\pi};
$$

\n
$$
x^{\pi - 1} \equiv 0 \pmod{\pi};
$$

\n
$$
x \equiv 0 \pmod{\pi}.
$$

$$
(z-x-y)^{\pi} + \pi(z-x-y)x^{\pi-1} \equiv 0 \pmod{\pi^2};
$$

$$
(z-x-y)^{\pi-2} + x^{\pi-1} \equiv 0 \ (mod \ \pi);
$$

$$
x^{\pi-1} \equiv 0 \ (mod \ \pi);
$$

$$
x\equiv 0 \ (mod\ \pi).
$$