

SCITECH RESEARCH ORGANISATION

Volume 4, Issue 4 Published online: August 08, 2015

Journal of Progressive Research in Mathematics www.scitecresearch.com/journals

> An algebraic proof of Fermat's last theorem

James E. Joseph Department of Mathematics Howard University Washington, DC 20059.

Abstract:

In 1995, A, Wiles announced, using cyclic groups, a proof of Fermat's Last Theorem, which is stated as follows: If π is an odd prime and x, y, z are relatively prime positive integers, then $z^{\pi} \neq x^{\pi} + y^{\pi}$. In this note, a proof of this theorem is offered, using elementary Algebra. It is proved that if π is an odd prime and x, y, z are positive inyegera satisfying $z^{\pi} = x^{\pi} + y^{\pi}$, then x, y, and z are each divisible by π .

Key words and phrases: Fermat.

2010 Mathematics Subject Classification: Primary 11Yxx.

The special case $z^4 = x^4 + y^4$ is impossible for relatively prime integers x, y, z [1]; it is only necessary to show that if x, y, z, are relatively prime positive integers, π is an odd prime, $z^{\pi} \neq x^{\pi} + y^{\pi}$. If x and π are positive integers, the notation $x \equiv 0 \pmod{\pi}$ will mean x is divisible by π . Let $C(\pi.k)$ represent the k^{th} coefficient of the binomial expansion of $(x+y)^{\pi}$; if π is prime, then $C(\pi,k) \equiv 0 \pmod{\pi}$ for every $1 < k < \pi$.

Theorem 1. If x, y, z are positive integers, π an odd prime and $x^{\pi} + y^{\pi} = z^{\pi}$, then $x \equiv 0 \pmod{\pi}$, $y \equiv 0 \pmod{\pi}$, $z \equiv 0 \pmod{\pi}$.

Theorem 1 is arrived at as a result of two Lemmas.

Lemma 1. If x, y, z are positive integers, π an odd prime, and $z^{\pi} = x^{\pi} + y^{\pi}$, then

- (1) $(x+y)^{\pi} z^{\pi} \equiv 0 \pmod{\pi};$
- (2) $(z-x)^{\pi} y^{\pi} \equiv 0 \pmod{\pi};$
- (3) $(z-y)^{\pi} x^{\pi} \equiv 0 \pmod{\pi};$
- (4) $x+y-z \equiv 0 \pmod{\pi}$;
- (5) $(x+y)^{\pi} z^{\pi} \equiv 0 \pmod{\pi^2};$
- (6) $(z-x)^{\pi} y^{\pi} \equiv 0 \pmod{\pi^2};$
- (7) $(z-y)^{\pi} x^{\pi} \equiv 0 \pmod{\pi^2};$

(8) $x + y - z \neq 0$.

Proof. Using the equation $z^{\pi} = x^{\pi} + y^{\pi}$, statemente (1), (2), and (3) are obvious; (4), (5), (6), and (7) come from the equations

$$(eq.1) \ (x+y)^{\pi} - z^{\pi} - (x+y-z)^{\pi} = \sum_{1}^{\pi-1} C(\pi,k)(x+y-z)^{\pi-k} z^{k};$$

$$(eq.2) \ (z-y)^{\pi} - x^{\pi} - (z-x-y)^{\pi} = \sum_{1}^{\pi-1} C(\pi,k)(z-x-y)^{\pi-k} x^{k};$$

$$(eq.3) \ (z-x)^{\pi} - y^{\pi} - (z-x-y)^{\pi} = \sum_{1}^{\pi-1} C(\pi,k)(z-x-y)^{\pi-k} y^{k};$$

and the fundamental theorem of Arithmetic; (8) is obvious. leading to xy = 0.

Lemma 2. If π is an odd prime and x, y, z are positive integers such that $z^{\pi} = x^{\pi} + y^{\pi}$, then

- (1) $xy \equiv 0 \pmod{\pi}$;
- (2) $yz \equiv 0 \pmod{\pi};$
- (3) $xz \equiv 0 \pmod{\pi}$.

Proof.

$$(x+y)^{\pi} - z^{\pi} = \sum_{1}^{\pi-1} C(\pi,k) x^{\pi-k} y^{k} \equiv 0 \pmod{\pi^{2}};$$

there is a k with $C(\pi,k)x^{\pi-k}y^k \equiv 0 \pmod{\pi^2}$; order $C(\pi,k)x^{\pi-k}y^k$ by inclusion and there exists k such that $C(\pi,k)x^{\pi-k}y^k \equiv 0 \pmod{\pi^2}$;

$$(F1) \ x^{\pi-k} y^k \equiv 0 \ (mod \ \pi)$$

multiplying by $x^k y^{\pi-k}$ gives $(xy)^{\pi} \equiv 0 \pmod{\pi}$ which implies

$$(F1^*) \quad xy \equiv 0 \pmod{\pi}.$$
$$(z-y)^{\pi} - x^{\pi} = \sum_{k=1}^{\pi-1} C(\pi,k) (-1)^k y^{\pi-k} z^k \equiv 0 \pmod{\pi^2};$$

there is a k with $C(\pi,k)y^{\pi-k}z^k \equiv 0 \pmod{\pi^2}$; order $C(\pi,k)y^{\pi-k}z^k$ by inclusion and there exists k such that $C(\pi,k)y^{\pi-k}z^k \equiv 0 \pmod{\pi^2}$;

(F2)
$$y^{\pi-k}z^k \equiv 0 \pmod{\pi};$$

multiplying by $y^k z^{\pi-k}$ gives $(yz)^{\pi} \equiv 0 \pmod{\pi}$ which implies

$$(F2^*) \quad yz \equiv 0 \pmod{\pi}.$$
$$(z-x)^{\pi} - x^{\pi} = \sum_{1}^{\pi-1} C(\pi,k) (-1)^k x^{\pi-k} z^k \equiv 0 \pmod{\pi^2};$$

there is a k with $C(\pi,k)x^{\pi-k}z^k \equiv 0 \pmod{\pi^2}$; order $C(\pi,k)x^{\pi-k}z^k$ by inclusion and there exists k such that $C(\pi,k)x^{\pi-k}z^k \equiv 0 \pmod{\pi^2}$;

$$(F3) x^{\pi-k} z^k \equiv 0 \pmod{\pi};$$

multiplying by $x^k z^{\pi-k}$ gives $(xz)^{\pi} \equiv 0 \pmod{\pi}$ which implies

$$(F3^*) \quad xz \equiv 0 \pmod{\pi}.$$

The last three equivalences $(F1^*), (F2^*), (F3^*)$, along with $x + y - z \equiv 0 \pmod{\pi}$ complete the proof.

Fermat's Last Theorem. If π is an odd prime and x, y, z are relatively prime positive integers, then $z^{\pi} \neq x^{\pi} + y^{\pi}$.

Proof. If π is an odd prime, then $z \equiv 0 \pmod{\pi}$; $y \equiv 0 \pmod{\pi} x \equiv 0 \pmod{\pi}$.

References

[1] H. Edwards, *Fermat's Last Theorem: A Genetic Introduction to Algebraic Number Theory*, Springer-Verlag, New York, (1977).

[2] A. Wiles, Modular ellipic eurves and Fermat's Last Theorem, Ann. Math. 141 (1995), 443-551.

[3] A. Wiles and R. Taylor, *Ring-theoretic properties of certain Heche algebras*, Ann. Math. 141 (1995), 553-573.*****Order $C(\pi,k)x^{\pi-k}y^k$ by magnitude and there exists k such that $C(\pi,k)x^{\pi-k}y^k \equiv 0 \pmod{\pi^2}$ ****Wiles and R. Taylor, Ring-theoretic properties of certain Heche algebras, Ann. Math. 141 (1995), 553-573. ****

$$(x+y)^{\pi} - z^{\pi} = \sum_{0}^{\pi-1} C(\pi,k)(x+y-z)^{\pi-k} z^{k};$$

$$(x+y)^{\pi} - z^{\pi} = \sum_{0}^{\pi-1} C(\pi,k)(x+y-z)^{\pi-k} z^{k};$$

$$(x+y-z)^{\pi} + \pi(x+y-z)z^{\pi-1} \equiv 0 \pmod{\pi^2};$$

$$(x+y-z)^{\pi-2}+z^{\pi-1}\equiv 0 \ (mod \ \pi);$$

$$z^{\pi-1} \equiv 0 \pmod{\pi};$$

$$z \equiv 0 \pmod{\pi}$$
.

$$(z-y)^{\pi} - x^{\pi} = \sum_{0}^{\pi-1} C(\pi,k)(z-x-y)^{\pi-k} x^{k};$$

$$(z-x)^{\pi} - y^{\pi} = \sum_{0}^{\pi-1} C(\pi,k)(z-x-y)^{\pi-k} x^{k};$$

$$(z-x-y)^{\pi} + \pi(z-x-y)x^{\pi-1} \equiv 0 \pmod{\pi^2};$$

$$(z - x - y)^{\pi - 2} + x^{\pi - 1} \equiv 0 \pmod{\pi};$$

$$x^{\pi-1} \equiv 0 \pmod{\pi};$$

$$x \equiv 0 \pmod{\pi}$$
.