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Abstract

In this paper, we consider cooperative Parabolic systems defined on bounded, continuous and strictly

Lipschitz domain of R" with conjugation conditions. We study the optimal control for these systems with
Dirichlet conditions. Also, we establish the problem with Neumann conditions .The control in our problems is of
distributed type.
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1. Introduction

The optimal control problems for systems governed by finite order partial differential equations (Elliptic,
Parabolic and Hyperbolic) defined on finite dimensional spaces have been studied by Lions [6,7]. The control problems
described by either infinite order operators or operators with an infinite number of variables have been discussed by Gali et
al in [3-5]. These results have been extended to cooperative [1,2,5,8-11,13,17]or non-cooperative[18] systems. In [14-16],
Sergienko and Deineka introduced some control problems of distributed systems with conjugation conditions and quadratic
cost functions.Here,we consider cooperative parabolic systems with conjugation conditions.Our paper is organized as
follows: In section two,some definitions and notations which will be used later,are introduced. In section three the
existence and uniqueness of the state for cooperative Dirichlet Parabolic systems with conjugation conditions is proved
,then, the set of equations and inequalities that characterizes the optimal control of systems is found. The case without
constraints is also considered. The problem with Neumann under conjugation conditions is studied for cooperative
Parabolic systems, in section four.

2. Definitions and Notations[14]

Let Q, and Q,, with boundary 0CQ;,0CQ, respectively, be bounded, continuous and strictly Lipschitz
domains from N -dimensional Euclidean space R" such that Q=(Q,UQ,) , (4 NQ,)=¢ and
Q=(QuUQ,) , T=(QuUé)\y (y=0Q N, #¢) be the boundary of the domain Q ,
Ve =yr Uy, 7 =0, np)x(0,T), 7 =@, ny)x(0,T),Q=Q, =Qx(0,T) be a complicated
cylinderand £ =T"x(0,T) be the lateral surface of a cylinder Q; Uy, .

Let us define

VxV =Y (%) = (Y1, V) o, € (H'(€))*1=1,2Vte(0,T), Y |,=0},

and introduce the space L?(0;T,V xV) of functions t — f (t) that map an interval (0,T) into the space V xV
such that
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= [ JIy@)dt < .

OTVxV) ©0T)

1Y 1
Finally ,we introduce the Hilbert space:
W(O,T)={Y:Y e *(0,T;V xV),% e*(0,T;VxV)},

With the norm :

2 — 2 dY 2
YOI, = (oY OFdt= [ Id).

%Y,

Definition 2.0.1 System E—V-(Wyi)+zr;:lhijyj = fi(x,t)  (x,t)e Q) is called cooperative system if
hij >0 for i# ] otherwise is called non -cooperative system [2].

3. Cooperative Parabolic systems with Dirichlet and Conjugation Conditions

In this section, we consider the following initial boundary value problem :

_ay_
S| [V )y h,, ACHINRACE)
= + in Q,
% hy V) |y, [0
_Y1(X’O) _yLo(X)
, _ (3.0.1)
= , yLo(X)'yz,o(X)EL(Q) in  Q,
LY>(%0) | | Ya0(X)
BACHINIY
= on %,
LY. (xt)] |0
under conjugation conditions :
[, 1o
_'BGVA_
) = on y;, (3.0.2)
o7
__ﬂ ov, | 0
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{ﬁ%} Ty.]

%Wﬂ_ Ty,]

where f, €eC(Q) , | fi <o, Q=Q; =Q, x(0,T) , and Q; ZUkaT , B=P(X) is a positive

function having discontinuity along 7,

on 7., (3.0.3)

0<r=r(x)<r, <o, r, =is a positive constant, reC(y), (3.0.4)

: : : L : _ oy .

v is an ort of a normal to y that is called simply a normal to » and it is directed into the domain €2,, 8_ is
Va

directional derivative of Y . In addition,

lyl=y -y~

y ={y} =y(xt) for(x,t)eyy,
y ={y} =y(xt) for(x;t)ey,

The model of our system is given by : A e E(VV (0,T),L2(0,T;V xV)),
AY (x) = A - _y. iy —hoy, Yoy “h,y,—h
() = Al ¥2) = (T =V (BVY) =Yy =Ry, ===V (5VY2) — oYy =i, Ys).

For a control U = (u,,U,) € (L*(Q))?, the state Y (X,t;u) = (y,(u), Y, (u)) € W(O,T) is given as a generalized
solution of
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AN
5’[ V'(W)‘”Hl hl2 yl(xit;u) f1+u1
—aygfu) i hyy V-(BV)+hy | Y, (X, tu) f +u,
Y (x0,u) ] | Yio(X)
, _ (3.0.5)
= ) yl,O(X)! yz,o(x) e L°(Q), in
LY, (X0,u) || Ya0(X)
[y, (x;t,u)] [0
= on Z,
LY (xtu)] |0
and by conditions (3.0.2), (3.0.3). Specify the observation by the following expression:
Z(u) = (z,(u), ,(u)) =Y (u) = (v, (u), yo (u)).
Foragiven Z, =(Zy,2,4) € (L?(Q))?, the cost functional is given by
J(U) =ly.(u) - ZldHLZZ(Q) AOR sz|||_22(Q) +(au,, U1)L2(Q) +(au,, Uz)Lz(Q)- (3.0.6)
Where
a(x)eC(y),0<a,<a(x)<a, <oxo, a,,a, = constant. (3.0.7)
The control problem then is to find :
u=(u;,u,)eU, (closed convex subset of (L*(Q))*such that :
(3.0.8)

J(u) =inf J(v) Vv el,,.

The generalized problem corresponds to initial boundary value problem (3.0.5), ( 3.0.2), (3.0.3) and mean to find
Y (x,t;u) = (y,(u), y,(u)) eW(0,T) that satisfies the following equations
%, Y,
J'Q Y @ dx + J.QE @,dX + J-Qﬂ(x)Vylv @, dx + jgﬂ(x)VyZV @,dx +

[ Py —hioy,6)dx+ [ (~haayidy —haoyody Jdx + (3.09)
JryJig1dy + [ rly, 1l4,1dy
= (L, 0) +(f,,0,) + (U, @) +(Uy, @,).

and

[y (x0:u)gdx = [y ()pdx. (3.0.10)
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VO =(¢,0,)eVyxV, ={Y =(V,,¥,) |Qi e(H' (Y)Y [.=0,i=1,2}. Let us define on L*(0;T,V xV)
,for each t a bilinear form
a(Y,®): (H3(Q))* < (Hg(Q)’ >R
by
aY,®) = [ (BOIVY.V +BIVY,Vé,)dx
0.5em — [ (Ys6h + 1Yok +Noadidy + oo ) o+ [ vy, Tl + [ rLy, 11,1y

(3.0.11)
This bilinear form is continuous ,since

la(Y, @) < kil Y]|[|®]| (3.0.12)

Lemma 3.0.1 The bilinear form (3.0.11) is coercive on (H{(€2))?; that is, there exists a positive constants k and o
such that:

a(y, Y)+k||Y|LL2(Q»2 >allY NH 1?2 VY = (Y1, ¥2) € (Ho(©)? (3.0.13)
Proof.
a(Y,Y) = 2(h12 At (ﬂ(x)Wyl +ﬂ(X)IVy1| o+ o Z(hl A ARICIARE
Lylyz ety W iy

J.yr[Y1]2 dy + Lr[yz ]2 dy
From (3.0.4), we get

a(y,Y)+ j(ﬁ( VY[ + B0y Y+

h,, 2
(h, + h)I il ey bl e Z(m

2(h1 )j (BONVY,[ + BONVY[ Y- [ vy, dx.

By Cauchy Schwartz inequality and from (Friedrichs inequality)

[P dx < w(@)] [vy[*dx , u(©)>0. (3.0.14)

We deduce

( 11 22)
a(Y,Y)+ maX(m)[HylHLz @

+1Yall 2 ] [LBOIVY[* +(BON) ™ (1(Q) ]y | )+

@ ( +h,,)

ﬁf (BOIVY2|” +(BOO) ™ (1(€)) ]y )dx—

([ Jyal )2 (j|y2| dx)?.
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This inequality is equivalent to

(hy;,hy) 1
a(Y,Y)+ maX(m 2)(” y1HL2 @ +|| Y1“L2(Q)

1 -1
mmm(ﬂ(x) (B0 (@) NIyl

1
(EH)MHLZ(Q) \/— || y2|||_2(9)

Al

Hg (Q)

Therefore,
> ||Y||(H L W e (HIQ)
where
k= max( el Ly o L e (B00) () ), B(x) is a positive constant > 0,

(ho+h) 277 2(hy, +hy))

which proves the coerciveness condition .

Let @ —> L(D) be alinear definedon L*(0,T;V xV) by

L(®) = [ f,(61)¢, 09+ [ £, (%, D), (x)clx,
this linear is continuous ,since :

| L(D) [< ¢ (|| 2|

1 ,C; IS a constant. (3.0.15)
(HG(©)

+ <G| D
0l < S Pt o
Based on (3.0.12), (3.0.13), (3.0.15) , and Lax - Milgram lemma(se also [16]),we have

Theorem3.0.2 Foragiven f =(f,, f,)eL*(0,T;V xV) and Y, 4(X),¥,(X) € L?(QQ) there exists a unique
solution Y =(Y,,Y,) €W (0, T) for system (3.0.9), (3.0.10).

Now, rewrite the cost functional (3.0.6) as(see[6]):

J(u) =7 (u,u) —2h(u) +||y, (0) - Zld”fZ(Q) +[ly.(0) - sz”fz(Q)’

where :

z(u,v) = (yl(u) yl(o) yl(v) yl(o))LZ(Q)

(¥ () = ¥2(0), Y, (V) =¥, (0)) o ) + (3.0.16)
@0U ) 4 ) + @00 U,) o )
is a continuous bilinear form and
hW) = (21 = ¥2(0), Y, (V) = ¥:(0) 2 g + 5017)

(Zos = ¥2(0), Y, (V) = ¥,(0) 2 gy
is a continuous linear form .
Since

u,u) = (au,u )
AN EICITD
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the general theory of Lions [6] gives :

Theorem 3.0.4 If the state of our system is determined as a solution to problem (3.0.9), (3.0.10), and if the cost functional
is given by (3.0.6), there exists a unique distributed control u = (u,,u,) € (L*(Q))* of problem (3.0.8); Moreover, it is
characterized by the following equations and inequalities:

—op,(u) ]
ot

_apz (U)
ot

p(x%;T,u)

EAO)

L p,(u)

| P, (X;T,u)

under conjugation conditions :

and

V-(BV)+h, h,, p, (u) Y1 (U) =24
+ in Q
hy, V-(BV)+hy, | p,(u) Y, (U) = 2,4
0
_ (3.0.18)
in
0
on I,
[ an]] ro
ﬂ@vA*_
~ = on 7,
op, (u)
_ﬂ—avA*__ 0
{ﬂapl_(“)} rIp, ()]
ov,™
= on 7y,
{ﬂaa“—(“j} TP, )]
L VA .

\v4 v=(v,v,)eU,,
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jQ( P, (U) +au, ) (v, —u,) dxdt + L( P, (U) +&,U,)(V, —u,) dxdt> 0, (3.0.19)
together with (3.0.5), where P(u) = (p,(u), p, (u)) is the adjoint state .
Proof. The optimal control U = (u,,U,) € (L*(Q))? is characterized by (see[6,16]) :
z(u,v—u) > h(v—u) vv=(v,Vv,)elU,.
By (3.0.16), and (3.0.17):

z(Uu,v-u)-—h(v-u)=(y,(U)=zy4, ¥, (V)-y, (U ))LZ(Q)

(Y2 (U) = 25, Y (V) = Y2 (U)) 2 o + (4.0.20)
(alul 1 l) 2 +(a2u2 2 UZ)LZ(Q)

Now, since

0 .. . 2
(24 RPELY ) = (P, -+ AY @),
then:
P AvE)) , = (pl(u),ayl( ) V(Y ()~ s ()~ Py, (W)
ot (L°(Q)) L (Q)

(pz(u>,ayj7w)—v~(ﬂvyz(u))—hmyl(u)—hzzyz(u»m -

Applying Green's formula, we obtain

(P(u),(§+ A)Y (u)) = (%“”—v(ﬂVpl(u))—hnpl(u)— AORAD)
n (%““)—vwm ()~ Py (U) — hy, P, ), Y, (U)) = «‘Ea+ AYP(U).Y (u)).

Hence A'P(u) = A"(p,(u), p,(u))

- 8p1 (U) 5}32 (U)

ot

= (%= V-(BVp, (1)) =y, p, (U) =y, p, (U), =V (BVp,(U)) —hy, p, (U) —hy, p, (U)).

= (Y, (U) = 2,4, ¥, (U) = Z,4)in Q.
Therefore, (3.0.20) is equivalent to

L0 (57, @)~ Py ()~ PeyPa (0), . -y, ) et +

J.Q(%Z(U) -V (ﬂvpl(u)) o h12 pl(u) - h22 P, (u), Y2 (V) - Y, (u)) dxdt +
J’iniu1 (v, —u,) dxdt + IQézuz (v, —u,)dxdt > 0.

So
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(P (W)~ (yl(V) Yi(UD) 2 gy + (P2 (W) (yz(V) y,(u)))

@ 2@ "
0,0 (0 D,
(pl(u)_A(yl(V)_yl(u)))Lz(Q) +(p1(u), oy
(Y, ()= Yo (W) .z,
(P (W) = A(Y, (V) = Y, (U)) 2 g, + (P (W), o

(Pu (), =y, (¥ (V) = V2 (U))) 2 ) + (P2 (U), =T (Y1 (V) = Y1 (u)))
(P, (U),—hy, (Y, (V) — Y, (U)))

2@ "
+ (P, (U),=hy, (y, (V) =y, (u)))

_ _ 2@ 2"

(a1u11V1 _u1)Lz(Q) + (azuzlvz - z)Lz(Q) =
Using equation (3.0.5), we obtain

jQ( P, (u) +&u, ) (v, —u, )dxdt + jQ( P, (U) +&,U,)(V, —U,) dxdt > 0, (3.0.21)
Remark 3.0.5 : If the constraints are absent ,i.e. When U_, =U , then the equality

p,(u)+au, =0 and p,(u)+au, =0
is obtained from inequality (3.0.21) .
So the control
U, =—@,u2 =-P (xeq (3.0.22)
& &,

is found from the latter equality. On the basis of equalities (3.0.5) and (3.0.18) the problem is obtained: Find a vector
-function

(Y, P) e (H)* ={@ = (@, @,) = (1, )" (Y2, P)") 1 @i (X D), € (H'(€2))%,1=1,2Vte (O, T), @[, =0},
that satisfies the equality systems

a(Y,®) = L(—g,CD),a(P,CD): h(Y,®) ¥ @ eV,xV,, (3.0.23)

and the vector solution (Y, P)T is found from this system along with the optimal control

If the vector solution (Y, P)T to problem (3.0.23) is smooth enough on Cj ,then the differential problem of finding the

vector - function (Y, P)" |, that satisfies the relations

o B |
El —V'(ﬁv)_hn _h12 Y1 Q 1:1
+ + = inQ, (3.0.24)
% —h21 _v'(ﬂv)_hzz Y, & fz
ot | 3, |
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—ap,
ot _V'(ﬂv)_hn _h21 Py Y1 — 1y
+ - = inQ, (3.0.25)
ﬁ _hlz _V’(ﬂv)_hzz P, Y> —Zyg
ot
PARL
= on X
L Y2 0
i (3.0.26)
p| |0
= on %,
1P| [0
and the conjugation conditions :
[, 1o
_'B OATN
~ = on 7y,
7Y
__ﬂ ov, || 0
) ) (3.0.27)
{ﬂ%} ly.]
oA
= on 7y,
8 +
{ﬂ%} rly.]
- VA -
il 6pl 1 0
4 ovy™ |
~ = on 7,
op,
i p ov,y™ ] 0
_ _ (3.0.28)
{ ﬂﬂ} ripl
ov,™
= on  yr
a +
{ﬂa—pz*} rip.]
- VA -
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Y (0) ] | Yie(X)
= in Q
Y2 (X,0) || Ya0(X)
i (3.0.29)
p(x,T)| (O
= in Q,
| p,(x,T)| [O

corresponds to problem (3.0.23).

Definition 3.0.6 A generalized (weak )solution to boundary -value problem (3.0.24)-( 3.0.29) is called a vector -function
(Y,P)" € (H)? that satisfies the equation

(%D,\P) +at;d,¥)=L(¥)VDe(H)? , (3.0.30)

where L(W) definedon (H)? by:

L(W) = [ ((f, =z )w)dx+ | (F, =20 )w5)lx, (3.0.31)
and a bilinear form
at;®,¥):(H)?*x(H)* >R
defined by

a(CD, \P) = Ig{ﬂ(x)Vylv 4 hllyll//l - hlzyzl//l + %Wl}dx +

L{ﬁ(x)VyZV Wy =Ny Yo, =Ny, Yo, + %Wz}dx +

2

[LBOIVRY vy —hyypyyy =y oy — Vi Jdx+ (3032)
[LBOIVP,V v, =y, b, = oy oy — Yo, X+

[y 0vddy + [ iy, iy 1dy +

[ripdlyaldy + [ rip, ]l 1d7 -

It is easy to check that

|a(t; @,'¥) < kel @], - IV (3.033)

(H)?’
is a continuous bilinear form .and

| LCY) = kall | (3.0.34)

H)2'
is a continuous linear form .

Lemma 3.0.7 The bilinear form (3.0.32) is coercive on (H )2 ; that is, there exists a positive constantsk , ¢ such that:

a(®, @) +k(| Y| +|| PH(ZLZ(Q»?_) Z05("Y||(2H(1)(Q»2 +||P||(2H(1)(Q))2) VY, P e (Ho ()%

(L2(@)?

(3.0.35)
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Proof.

a(®,®) = 2(h12 S AGCSARZCIAL )dx+2(h1 S LTSS+ AOOy, e+
z(hu 2 s POV + BCOVR )dx+2(hu BN [LBOIVR,[*+ B|VE,[ Ydx~
[ vyt plpzdx—(hl h“h 3k v |p1 )dx—(hl s Ll e
(5— )(hu )j plyldx+(_2 —1)<hu )j p,Yatx +

Lr y1 d7+L yz] dﬂ/J; pl d]/+J; p2 d}/

From (3.0.4), we get

a(®,@)+ (hu 1 A LS o hzzh i [ Qvaf +]pa[ x>

2(h1 I(ﬁ( AR NS AR )dx+2(hl j (BOIVY,|* + BVY,[ )k +
2(h12+h21)j (BR[| +IB(X)|VF’1| )dX+2(h12 I(ﬁ’( IVp,|* + BO)|Vp,| Ydx —
J‘Qy1Y2dX_j plpzdx"‘(__:l-)(h1 )J. p,y,dx +

1
D P

By Cauchy Schwartz inequality and from (3.0.14), we deduce

a(, @)+max<ﬁ){nvlu L) + 1P @1+ DY g, + ol I 2

[ (BOOVY|* + (B0 (@) |y )dx+(—

2(hy, +hyy)

ﬁ [L (B, +(BO0) (@) |y )ebx -

[ BOOR + (B0 () ps] Yk + [LBOOD,|" + (BOO)* ((€) [ po Ylx

2(hy, +hyy) 0
(EARE (jQ|y2| - (| o dx)z(jg|p2| B +

1 1
|2dx)5(j Ipy| dx)2 +

ys| )2 (j EARCOER

Since
a(x) eC(Q),
O<a,<a(x)<a <o, a,,a, = constant ,

then we have
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a(d, D) + max(—(h“’h”) !

(h, +hyy) 2
min(B(x), (ﬂ(X))*l(u(Q))*l){(HylH,i%(Q) + Hh”ﬁé(m) + (| le,i(l)(Q) +| pz”,ié(ﬂ) )+

X o, + 105 o T+ DY, + P2l T2

2(hy, +hyy)

1 1 , 1 1 )
(E“WHLZ(Q) _Enyznl_z(g)) + (Ele“LZ(Q) _E“pznl_z(g))

Therefore

a(®@, @) + k(| Y|[;

(L2(@)?

+[IP}:

(L)

2 2 1 2
2) Za(”Y”(H%(Q))Z +||P||(H%(Q))2) VY, Pe(Ho ()",
this inequality is equivalent to
2
(@, @) +kPOP? > af®,. YO =((vi P (Y. P)),

where

(hll’ 22) 1 — 1 - -1 -1
((hlz h) )= 2+ Zl)mln(ﬂ(x),(ﬂ(x)) (u(€))7),

which proves the coerciveness condition .

Since W = (¥,,\¥,)" be arbitrary elements of the Hilbert space (H)? with the norm

||

2=l

2
(H5()? H(DZH(H%)(Q»2

Based on (3.0.33) - (3.0.35) and Lax-Milgram Lemma , there exists a unique vector solution (Y,P)" € (H)? to the
boundary value problem (3.0.30).

4. Cooperative Neumann parabolic systems under conjugation conditions

In this section ,we discuss the following 2 x 2 cooperative Parabolic systems with non - homogenous Neumann
conditions:
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V-(BV)+hy h, (0 || (1)
+ in - Q,
h,, V- (BV)+hy, | v, (60 | | f,(x,1)
Y1,0(X)
= + V10X, Yz 0(X) € L(Q) in 4.0.36)
Y20(X)
9
= on I,
9,

with conjugation conditions (3.0.2) ,( 3.0.3). Where (g,,d,) € (L*(Z))* are given functions. Let us define

VoxVe ={Y (%) = (1, Vo) I, € (H'(€2))%,1 =1, 2Vt € (0, T)}.

For a control U = (U,,U,) € (L*(Q))?, the state Y (X,t;u) = (y,(u), Y, (u)) € W(0,T) is given as a generalized

solution of

Oy, (u) |
;’[ V-(ﬁV)+h11 h12 yl(X1t;u) f1+u1
0y, (u) h,, V-(BV)+h, | y,(x,t;u)| | f, +u,
ot
Y 60,u) ] | Yao(X)
= ) yLo(X)’ yZ,O(X) el? (9) in  Q, (4.0.37)
LY (50,u) | | Y20(X)
PEAON
p AN 9
= on X
ﬂ 8y2 (u) 92
| OV |
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and by conjugation conditions (3.0.2), (3.0.3). For agiven Z, =(Z,4,2,4) € (L2(Q))?, the cost functional is given a
gain by (3.0.6). The control problem then is to find :

u=(u,,u,) eU,,(closed convex subset of (L*(Q))*such that:

(4.0.38)
J() =inf J(v) vvelU,,.

The generalized problem corresponds to initial boundary value problem (4.0.37), (3.0.2), (3.0.3) and mean to find
Y (x,t;u) = (y,(u), y,(u)) € W(O,T) that satisfies the following equations

IQ % @, dX + J;z % @, dX + jﬂﬂ(x)VyIV @, dx + Jgﬂ(x)VyZV @, dx +
[ (huyadh = Doy )ax+ [ (—hy1yid, —h,,Y,6, )dx+ 4.0.39)
[y A1dy + [ Ly, 4, 1dy
= (f0) + (£,0,) + [ 0, (00,00 + [ 9,(00,d0 + (Uy, 04) + (U, 0,):
and
'fgyi (x,0;u)pdx = J.Qyiyo(x)goidx. (4.0.40)

VO = (¢, 4,) €Vy xVy ={Y = (Y1, ¥2) |, € (H'(€))*, 1=1,2}. Since
(Ho(9)* < (HY ()™

We introduce again the bilinear form (3.0.11) which is coercive on (H(€2))?, that is, there exists a positive constants k
and o such that:

a(Y,Y)+Kk[Y[?, , =a Y|} VY =(y,Y,) € (H(Q)%. (4.0.41)

(L2() (H(@)?

This bilinear form is continuous ,since

|a(Y, @) [< ki Y]|||®]| (4.042)
Let ® — L (D) be alinear form defined on L*(0,T;V, xV,) by

Ly(@) = [ (06009 + £, (6 D)@, ())dx+ [ (9, (X ) (X) + 9, (X, D)2, (x))dl
this linear form is continuous since :

| Ly (D) |S||f1”L2(Q)|| ¢1||L2(Q) "‘Hle‘Lz(Q)H ¢2HL2(Q) +

10z, |2z, +19:l2, | 22l

) N

The inequalities

lollzy, <Cil @l

and

lolleg, <Coll ol

()
imply
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| Ly (D) |SC1Hf1||L2(Q)H (P1||H1(Q) + CleZHLZ(Q)H (02||H1(Q) +
Co 91||,_2(r)|| (/71||H1(Q) +Co| gz”,_z(r)H (P2||H1(Q)
< [Clelan(Q) + 02H91HL2(F)]” ¢1HH1(Q) +

[C1||f2|||_2(m +Co| 92||,_2(1_) li (P2||H1(Q)-

Hence

| L, (P) < c3||<1>|L ,C, IS a constant, (4.0.43)

HY(@)?

Based on (4.0.41)- (4.0.43) and Lax - Milgram lemma ,we have
Theorem 4.0.8 For a given f =(f, f,)eL*(0,T;VxV) and Y, 4(X),¥,,(X) € L?(QQ) there exists a unique
solution Y =(Y,,Y,) €W (O, T) for system (4.0.39) , (4.0.40).

Now, rewrite The cost functional :
J(u) =z (u,u) —2L(u) +|y,(0) - ZldHLZZ(Q) +]y»(0) - sz||L22(Q)-

Then the general theory of Lions [6]gives :

Theorem 4.0.9 If the state of our system is determined as a solution to problem (4.0.39), (4.0.40), and if the cost functional
is given by (4.0.6), there exists a unique distributed control u = (u,,u,) € (L*(Q))? of problem (4.0.38) ;Moreover, itis
characterized by the following equations and inequalities:

[ —op,(u) |
ot V- (BV)+h, h,, p(U) || Ya(u) =2y

1
+

inQ,

—0p,(u)
ot h;, V-(BV)+hy, || p,(U) Y, (U) = 2,4

i |

[p,(x;T,u)| [0

= in - Q, (4044

| P, (X;T,u) 0
| L opu(u) |

p ovy™ 0

B op, (u)

*
AN

under conjugation conditions :
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PEAONES
ﬁavA*}

~ = on 7,
ﬂapz(ﬂ .

AN

{ﬂapl_(”)}' Ipu ()]

ov,y™
= on g,
{ﬁ%pz—(li)} (LX)
L VA -
v ooov=(v,V,)eU,,
J (P (W) + @) (v, —uy) dxlt + [ (p, () +8,u,)(v, —u,) dxclt >, (4.0.45)

together with (4.0.37), where

P() = (p,(u), p, (u))is the adjoint state
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