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Abstract

In this paper, the distributed control for non-cooperative elliptic systems under conjugation
conditions is established. First, the existence and uniqueness of the state for these systems
with Dirichlet and conjugation conditions is proved, then the set of equations and inequali-
ties that characterizes the distributed control of these systems is found. The non-cooperative
Neumann systems with conjugation conditions is also discussed.
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1. Introduction

The necessary and sufficient conditions of optimality for systems governed by partial differential equa-
tions have been studied by Lions [11]. The control problems described by either infinite order operators or
operators with an infinite number of variables were established by Gali et. al. [3, 4, 5]. These results have
been extended to cooperative systems [1, 2, 6, 13, 16] or non-cooperative systems [10, 17].

Serag et. al. discussed the optimal control for systems involving schrodinger operators [12, 14]. The
existence results have been proved for some non linear systems in [8, 9, 14, 15]. Some applications for control
problems have been introduced for example in [7, 10].
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New optimal control problems of distributed systems described by an elliptic, parabolic and hyperbolic
operators with conjugation conditions and by a quadratic cost functional have been studied by Sergienko
and Deineka [18-20].

In the present work, using the theory of Lions [11], Sergienko and Deineka [18-20], the distributed control
for n× n non cooperative Dirichlet elliptic systems is discussed . First the existence and uniqueness of the
state for these systems is proved, then the set of equations and inequalities that characterizes the distributed
control of these systems is found. The optimal control of distributed type for non-cooperative Neumann
problems under conjugation conditions is also studied.

2 Distributed control for non-cooperative Dirichlet elliptic sys-
tems under conjugation conditions

In this section, we study the distributed control for the following n × n non cooperative Dirichlet elliptic
systems: 

−∆hi +
∑n
j=1 aijhj = fi in Ω,

hi = 0 on Γ, i = 1, 2, ..., n,
(1)

under conjugation conditions:
R1

{
∂hi

∂vA

}−
+R2

{
∂hi

∂vA

}+

= [hi] + δ on γ,

[
∂hi

∂vA

]
=

[
n∑

i,j=1

∂hi

∂xj
cos(v, xi)

]
= wi on γ, i = 1, 2, ...n,

(2)

where Ω1 and Ω2, with boundary ∂Ω1 and ∂Ω2 respectively, are bounded, continuous and strictly Lipchitz
domains from Rn such that :

Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = φ,

Γ = (∂Ω1 ∪ ∂Ω2)/γ, is boundary of Ω, γ = ∂Ω1 ∩ ∂Ω2 6= φ, γ = γ+ ∪ γ−

∂Ω1 ∩ γ = γ+, ∂Ω2 ∩ γ = γ−, fi ∈ L2(Ω), (i = 1, 2, ..., n),

R1, R2, w, δ ∈ C (γ) , R1, R2 ≥ 0, R1 +R2 ≥ R0 > 0, R0 = constant, (3)

−→n is an ort of an outer normal toγ, [ϕ] = ϕ+ − ϕ−,

ϕ+ = {ϕ}+ = ϕ(x) for x ∈ γ+

ϕ− = {ϕ}− = ϕ(x) for x ∈ γ−.

System (1) is called cooperative system if aij > 0 ∀ i 6= j , otherwise is called non-
cooperative system.

In our work, we assume

aij =

 1 if i ≥ j,

−1 if i < j, i, j = 1, 2, ..., n.

(i.e. non-cooperative systems).
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We first prove the existence of the state for system (1) under conjugation conditions (2). Then, we discus
the existence of distributed control for this system; and we find the set of equations and inequalities that
characterizes this distributed control.

Existence and uniqueness of the state

Since
H1

0 (Ω) ⊆ L2(Ω) ⊆ H−1(Ω),

then by Cartesian product, we have chain of the form

(H1
0 (Ω))n ⊆ (L2(Ω))n ⊆ (H−1(Ω))n.

On (H1
0 (Ω))n, we introduce the bilinear form:

a(h, ψ) =
n∑
i=1

∫
Ω

∇hi∇ψidx+

n∑
i,j=1

∫
Ω

aijhiψidx

+

n∑
i=1

∫
γ

[hi][ψi]

R1 +R2
dγ.

(4)

It is easy to check that

|a(h, ψ)| ≤ k1‖h‖‖ψ‖. (5)

The bilinear form (4) is coercive on (H1
0 (Ω))n; that is, there exists a positive constant C such that

a(h, h) ≥ C‖h‖2(H1
0 (Ω))n ∀h = {h1, h2, ..., hn} ∈ (H1

0 (Ω))n (6)

Proof.

a(h, h) =

n∑
i=1

∫
Ω

|∇hi|2 dx+

n∑
i=1

∫
Ω

|hi|2 dx+

n∑
i=1

∫
γ

[hi]
2

R1 +R2
dγ

=

n∑
i=1

∫
Ω

(|∇hi|2 + |hi|2)dx+

n∑
i=1

∫
γ

[hi]
2

R1 +R2
dγ

(3), implies

a(h, h) ≥C
n∑
i=1

∫
Ω

(|∇hi|2 + |hi|2)dx,

therefore

a(h, h) ≥C
n∑
i=1

‖hi‖2H1
0 (Ω)

=C‖h‖2(H1
0 (Ω))n ,
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which proves the coerciveness condition of the bilinear form (4) on (H1
0 (Ω))n .

Now, let

L(ψ) =

n∑
i=1

∫
Ω

fi(x)ψi(x)dx+

n∑
i=1

∫
γ

(R2w − δ)ψi
R1 +R2

dγ

−
n∑
i=1

∫
γ

wψ+
i dγ

(7)

be a linear form on (H1
0 (Ω))n, this linear form is continuous, since :

|L(ψ)| ≤ K‖ψ‖(H1
0 (Ω))n ∀ψ ∈ (H1

0 (Ω))n,K is a constant. (8)

Then using Lax Milgram lemma, there exists a unique solution h ∈ (H1
0 (Ω))n such that:

a(h, ψ) = L(ψ) ∀ψ = (ψi)
n
i=1 ∈ (H1

0 (Ω))n. (9)

Then, we have proved the following theorem
For a given f= {fi}ni=1 ∈ (L2(Ω))n there exists a unique solution h = {hi}ni=1 ∈ (H1

0 (Ω))n for non-
cooperative Dirichlet system (1) with conjugation conditions (2)

Formulation of the control problem

The space U=(L2(Ω))n is the space of controls. For a control u= {u1, u2, ..., un} ∈ (L2(Ω))n, the state
h(u)= {h1(u), h2(u), ..., hn(u)} of the system is given by the solution of

−∆hi(u) +
∑n
j=1 aijhj(u) = fi(u) + ui in Ω,

hi(u) = 0 on Γ, i = 1, 2, ..., n,
(10)

under conjugation conditions:
R1

{
∂hi(u)
∂vA

}−
+R2

{
∂hi(u)
∂vA

}+

= [hi(u)] + δ on γ,

[
∂hi(u)
∂vA

]
=

[
n∑

i,j=1

∂hi(u)
∂xj

cos(v, xi)

]
= wi on γ, i = 1, 2, ...n.

(11)

Specify the observation equation by

z(u) = {z1(u), z2(u), ..., zn(u)} =Ch(u) = C{h1(u), h2(u), ..., hn(u)}

={h1(u), h2(u), ..., hn(u)}.

For a given zd = {z1d, z2d, ..., znd} ∈ (L2(Ω))n,the cost functional is given by

J(v) =

n∑
i=1

‖hi(v)− zid‖2L2(Ω) + (Nv, v)(L2(Ω))n , (12)

where N is a hermitian positive definite operator such that :

(Nv, v)(L2(Ω))n ≥M‖v‖2(L2(Ω))n , M > 0, ∀ v ∈ U. (13)

The control problem then is to find :{
u = {u1, u2, ..., un} ∈ Uad such that:
J(u) = inf J(v) ∀v ∈ Uad,

(14)
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where Uad is a closed convex subset of (L2(Ω))n.
The cost functional (12)can be written as

J(v) = π(v, v)− 2H(v) +

n∑
i=1

‖zid − hi(0))‖2L2(Ω),

where

π(u, v) =

n∑
i=1

(hi(u)− hi(0), hi(v)− hi(0))L2(Ω) + (Nv, v)(L2(Ω))n , (15)

is a continuous bilinear form and from (13), it is coercive, that is:

π(v, v) ≥ N‖v‖2(L2(Ω))n and

H(v) =

n∑
i=1

(zid − hi(0), hi(v)− hi(0))L2(Ω), (16)

is a continuous linear form on (L2(Ω))n. Then, using the theory of Lions [11], there exists a unique optimal
control of problem (14); Moreover it is characterized by Let us suppose that (6) holds and the cost functional
is given by (12), then the distributed control u is characterized by

−∆pi(u) +
∑n
j=1 aijpi(u) = hi(u)− zid in Ω,

pi(u) = 0 on Γ,[
∂pi(u)
∂vA∗

]
= 0 on γ,

{
∂pi(u)
∂vA∗

}±
= 1

R1+R2
[pi(u)] on γ,

∑n
i=1(pi(u), vi − ui) + (Nu, v − u)(L2(Ω))n ≥ 0

, i = 1, 2, ..., n,

(17)

together with(10),where p(u) = {p1(u), p2(u), ..., pn(u)} is the adjoint state.

Proof. The optimal control u = {ui}ni=1 ∈ (L2(Ω))n is characterized by [11] :

π(u, v − u) ≥ H(v − u) ∀ v = {v1, v2, ..., vn} ∈ Uad.

From (15), and (16):

π(u, v − u)−H(v − u) =

n∑
i=1

(hi(u)− zid, hi(v)− hi(u))L2(Ω)

+

n∑
i=1

(Nui, vi − ui)L2(Ω) ≥ 0.

(18)

Since the model A of the system is given by

Ah(u) = A(h1(u), h2(u), ..., hn(u)) =

n∑
i=1

(−∆hi(u) +

n∑
j=1

aijhj(u)),

and since

(p(u), Ah(u)) = (A∗p(u), h(u)),
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then

(p(u), Ah(u))(L2(Ω))n =

n∑
i=1

(pi(u),−∆hi(u) +

n∑
j=1

aijhj(u))

=

n∑
i=1

(−∆pi(u) +

n∑
j=1

ajipj(u), hi(u))L2(Ω),

hence (18) is equivalent to

n∑
i=1

(−∆pi(u)−
n∑
j=1

ajipj(u), hi(v − u)− hi(0))L2(Ω)

+

n∑
i=1

(Nui, vi − ui)L2(Ω) ≥ 0.

Therefore

n∑
i=1

(A∗pi(u), hi(v − u)− hi(0))L2(Ω)

+

n∑
i=1

(Nui, vi − ui)L2(Ω) ≥ 0.

Applying Green’s formula, we obtain

n∑
i=1

(pi(u), Ahi(v − u)−Ahi(0))L2(Ω)

+

n∑
i=1

(Nui, vi − ui)L2(Ω) ≥ 0.

Using equation (10), we get

n∑
i=1

(pi(u), vi − ui) +

n∑
i=1

(Nui, vi − ui)L2(Ω) ≥ 0,

i.e

n∑
i=1

∫
Ω

(pi(u) +Nui)(vi − ui)dx ≥ 0.

3 Distributed control for non-cooperative Neumann elliptic sys-
tems with conjugation conditions

In this section, we consider the following non-cooperative Neumann elliptic system
−∆hi +

∑n
j=1 aijhj = fi in Ω,

∂hi

∂νA
= gi on Γ,

(19)
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with conjugation conditions (2), where g = {g1, g2, ..., gn} ∈ (L2(Γ))n is given function. We introduce again
the bilinear form (4) which is coercive on (H1(Ω))n, since

((H1
0 (Ω))n) ⊆ ((H1(Ω))n).

Then based on (6), (8) and Lax-Milgram lemma, there exists a unique solution h for system (19) such that :

a(h, ψ) = LN (ψ), ∀ψ ∈ (H1(Ω))n,

where

LN (ψ) =

n∑
i=1

∫
Ω

fi(x)ψi(x)dx+

n∑
i=1

∫
Γ

gi(x)ψi(x)dΓ

+

n∑
i=1

∫
γ

(R2w − δ)ψi
R1 +R2

dγ −
n∑
i=1

∫
γ

wψ+
i dγ,

is a continuous linear form defined on (H1(Ω))n.
Let us multiply both sides of first equation of (19) by ψ ∈ (H1(Ω))n and integrate over Ω , we obtain

n∑
i=1

∫
Ω

(−∆hi +

n∑
j=1

aijhj)ψi(x)dx =

n∑
i=1

∫
Ω

fiψidx.

Applying Green’s formula,

n∑
i=1

∫
Ω

(−∆hi +

n∑
j=1

aijhj)ψi(x)dx+

n∑
i=1

∫
Γ

(
∂hi
∂νA

)ψi(x)dΓ+

n∑
i=1

∫
γ

(
∂hi
∂νA

)ψi(x)dγ + a(h, ψ) =

n∑
i=1

∫
Ω

fiψidx.

Then, from
a(h, ψ) = LN (ψ) ,

we deduce the Neumann conditions
∂hi
∂νA

= gi, on Γ.

So we can formulate the corresponding control problem:
The space U=(L2(Ω))n is the space of controls. For a control u= {u1, u2, ..., un} ∈ (L2(Ω))n, the state
h(u)= {h1(u), h2(u), ..., hn(u)} of the system is given by the solution of

−∆hi(u) +
∑n
j=1 aijhj(u) = fi(u) + ui in Ω,

∂hi(u)
∂νA

= gi on Γ,
(20)

under conjugation conditions (11). For a given zd = {z1d, z2d, ..., znd} ∈ (L2(Ω))n, the cost functional is
again given by (12), then there exists a unique optimal control u ∈ Uad such that:{

u = {u1, u2, ..., un} ∈ Uad such that:
J(u) = inf J(v) ∀v ∈ Uad.

Moreover it is characterized by the following equations and inequalities
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−∆pi(u) +
∑n
j=1 aijpi(u) = hi(u)− zid in Ω,

∂pi(u)
∂vA∗ = 0 on Γ,[
∂pi(u)
∂vA∗

]
= 0 on γ,

{
∂pi(u)
∂vA∗

}±
= 1

R1+R2
[pi(u)] on γ

∑n
i=1(pi(u), vi − ui) + (Nu, v − u)(L2(Ω))n ≥ 0

, i = 1, 2, ..., n,

together with(20), where p(u) = {p1(u), p2(u), ..., pn(u)} is the adjoint state.
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