Journal of Progressive Research in Mathematics(JPRM)
ISSN: 2395-0218

Q OC SCITECH Volume 11, Issue 3
RESEARCH ORGANISATION Published online: March 21, 2017 |

Journal of Progressive Research in Mathematics
www.scitecresearch.com/journals

o

Some Numerical Methods for Solving Linear Two-Dimensional
Volterra Integral Equation

A. M. Al-Bugami®, M. M. Al-Wagdani®

! Department of Mathematics, Faculty of Sciences Taif University, KSA
2 Department of Mathematics, Faculty of Sciences Taif University, KSA

Abstract: In this paper, the existence and uniqueness of solution of the linear two- dimensional Volterra

integral equation of the second kind(LT-DVIE) with Continuous Kernel are discussed and proved. Trapezoidal
rule and Simpson's rule are used to solve this type of two dimensional Volterra integral equation of the second
kind. Numerical examples are considered to illustrate the effectiveness of the proposed methods and the error
is estimated.
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1.Introduction:

Two-dimensional integral equations provide an important tool for modeling many problems in
engineering and science [1]. There are many well-written texts on the theory and applications of
integral equations in different sciences. From 1960to the present day, many new numerical methods
have been developed for the solution of many types of integral equations, such as the Toeplitz matrix
method, the product Nystrom method, the Galerkin method; trapezoidal rule and Simpson's rule (see
Linz [2], Baker et al. [3], and Delves and Mohamed [4]). More information for some numerical
methods can be found especially in Delves and Mohamed [4], Atkinson [5, 6] and Golberg [7]. In the
references [1-3], the trapezoidal rule and Simpson's rule was used to solve the integral equation in
one dimensional.In [8],the author solved L-VIE's using the trapezoidal rule and Simpson's rule. In
[9], the author's solved NL-VIE's using the trapezoidal rule and Simpson's rule. In the reference
[10], the authors solved the T-DVIE of the second kind using spectral Galerkin method. In [11], the
authors solved the two dimensional nonlinear integral equation of the second kind using degenerate
kernel method. Guogiang et al., in [12], obtained numerically the solution of two-dimensional
nonlinear Volterra integral equation by collocation and iteration collocation methods. In [13],
Guogiang and Jiong analyzed the existence of asymptotic error expansion of the Nystrom solution
for two-dimensional nonlinear Fredholm integral equation of the second kind. In this paper, we use
trapezoidal rule and Simpson's rule to discuss numerically the solution of the LT-DVIE of the
second kind with continuous kernel of the form
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mi(x,y)=f (x,y)+}tﬁk(x,y,t,s)u(t,s)dtds
(1)

where g is a constant defines the kind of the integral equation, u(x,y)is an unknown function, will
be determined, the functions f (x,y)and k(x,y,t,s)are given analytical functions defined,
respectively, J =[0,X]x[0,Y],E ={(x,y,t,s):0<t <x <a,0<s <y <b},u andA are constants
that have many physical meanings.

2.The existence and uniqueness of the solution:

To guarantee the existence of a unique solution of equation (1), we assume the following
conditions:

(i) The kernel k (x,y,t,s) is continuous function in E satisfies:
lk (x,y,t,s)]<K ,K is a constant

(ii) The given function f (x,y) is continuous with its derivatives and belongs to J =[0, X]x[0, Y],
and its norm is defined as:

| (x,y)||:ma>J<|f (x,y)| <M V(x,y)eJ , M isaconstant.
X,y e

(iii) the unknown function u(x,y)is satisfies the Lipschits condition with respect to its argument
and its normal is defined in L,[0, X ]xL,[0)Y ] as:

Xy
o, y)|= [”|u (x,y)[ dxdy]’><C  ,where C is a constant (2)
00

To prove the existence a unique solution of (1) using Banach fixed point theorem. Rewrite equation
(3.1) in the integral operator form:

T_u(x,y):%f (,¥)+Tu(x,y) 3)

where

Tu(x,y)zij‘]'k(x,y,t,s)u(t,s)dtds 4)
IUOO

Theorem 1:

If the conditions (i), (ii) and (iii) are verified, then equation (1) has auneque solution in the
Banach space C ([0, X]x[0,Y]), the proof of tis theorem depends on the following two lemmas.

Lemma 1:

Underthe conditions (i)-(iii), the operator T defined by (3), maps the space C ([0, X]x[0,Y]) into
itself.
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Proof:

In view of the formulas (3) and (4), then using the condition (ii), and applying Couchy-Shwarz
inequality, we have

— 1 AT
\ﬁu(x,y)us—”f o, y)|+ —‘H”|k(x,y,t,s)||u(t,s)|dtds (5)
4 Ao
Using the condition (i) and (iii), the above inequality takes the form:
— M A
‘Fu(x,y)HS—+A||u(x,y)|| ,Az‘—‘KC (6)
|24 17

Inequality (6) show that, the operator T maps the space C ([0, X]x[0, Y]) into itself.

Moreover, the inequality (6) involves that the operator T is bounded where

[Tuc, y)|<Afux,y)| @)

The inequalities (6) and (7) define that the operator T is bounded.

Lemma 2:

If the conditions (i) and (iii) are satisfied .then the operator T is contractive in the Banach space

C ([0, X]x[0,Y]).
Proof:

For the two functions u,(x,y)and u,(x,y)in the space C ([0, X]x[0, Y]) the formula (3) and (4)
lead to,

A

H(T_ul —T_UZ)(X Y )H <
7]

m‘ (Y, t,8)]luyt,5) —u, (¢, 8)|dtds

Using the condition (iii) and then applying Cauchy-Shwarz inequality, we have

[T, —Tu)ex,y)| < Afust.s)-u, t.5) ©)

Inequality (8) show that, the operator T is continuous in the space C ([0, X]x[0,Y]).

Also, T is a contraction operator, under the condition A <1, in the Banach space C ([0, X]x[0,Y]).
Therefore, the operator T has a unique fixed point which is the unique solution of equation (1).

3.The Trapezoidal Rule:

In this section, the trapezoidal rule is used to solve LT-DVIE of the second kind:
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mi(x,y)=f (x,y)+/1ﬁk(x,y,t,s)u(t,s)dtds 9)

Here, u(x,y) is the unknown function, will be determined, the two analytic functions f (x,y)and
k (x,y,t,s) are given and defined, respectively, on the following domains:

D =[0,a]x[0,b],and E ={(x,y,t,5):0<t <x <a,0<s<y <b}. Also, pzand A are constants
that have many physical meanings. We will divide
0=X,<X;<..<Xy =a,0=y,<y,<..<y, =b beapartition of [0,a], [0,b] with the step size h

,such that, x; =ih, y, =ih, t, = jhand s; = jhfori,j=01..,N .

We will refer to the value of the solution at (x;,y;) as u(x;,y;)=u,;, f (x;,y;)=f;, isthe
value of function f at (x;,y;) and the value of the kernel at (x;,y;.t;.s;)as
k(X yi.t;,8,)=ki;;; » k(X;,y.t;,s;) clearly vanishes for t; >x;, and s; >y, as the
integration (9) ends at t; <x; ands; <y, .

So, if we use the trapezoidal rule with N subintervals to approximate the integral in the two-
dimensional Volterra integral equation of the second kind (9), we have

k(x,y,t,s)u(t,s)dtds = h[%k (X, Y.t Sty S,)+k(x,y.t,su(t,,s,)+...

O ) <
O <

1
+K (X, Yty 5,8y (tN—17SN—1)+Ek (x,y .ty syulty,sy)l

(10)
where t; <x,s; <y, j 20, x =x =tyand y =y =s,.
The integral equation (9)is the approximated by the sum
1
u(x,y)=f (X,y)+h[§k(X,y,to,So)U(to,Son(X,y,tl,sl)U(tySl)+---
(11)

1
+k(x,y,thl,stl)u(thl,stl)JrEk(x,y,tN Sy u(ty .Sy )l

wheret, <x,s; <y, j20,x =x =tyand y =y, =s.

The integrations in (10) isovertand s, 0<t <x and0O<s <y , thus for t; >x; and s; >y, we take
k(x;,y;.t;,8;)=0.

Since the integrals in (9) vanishes for x =x,=0andy =y, =0.

U(Xo’yo):f (Xo1yo)

and for i,j=01..,N ,t; <x;and s; <y, we have,
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1
i adiajat =K Uyl (12)

1
u; =f;; +h[§kl,l,0,0u0,0+k1,1,1,1u1,1+"'+k 5 gt

where k; ; ;.

=k (X;,Y;:t;,8;), j <i.

Which are N +1equations in u
fori =0,1,...,N .

the approximations to the solution u(x,y)of (9) at (x,,y,)

If we leaving only the nonhomogeneous part f, ; on the right side of (12), then write all the N +1

equations for u, ., i =0,1,...,N , we have the following triangular system of equations:

fos =fo0
h h
) KypoUpo +(1— 5 Kipi gy ~f,,
h h
——Kazooo —hKg a1y + (=7 Kpp 55Uz, =f,,
: i (13)
n h
2 Kagoloo =NKsgaaliyy —hkgz, U, +(1- 2 K3333)33 =f,;
h

h
_E k nnoodoo hk NENERL R hk NN22U22 7o T (1_5 k N,N,N,N)u NN T f N,N

as a system of N +1equations inthe N +1desired unknowns u,o,U,,,....Uy -

Now, we must recognize that the set of equations (13) can be written in a matrix notation form:

AU =F (14)

where Ais the (N +1)x(N +1) matrix of the coefficients of the system of equations (13),
U =(u;;) is the column matrix of the sample solutions, and F = (f; ;) is the column matrix of the
nonhomogeneous parts f, ; in (13).

4.The Simpson's Rule:
For LT-DVIE of the second kind:

ux,y)=f (x,y)+]_y[k(x,y,t,s)u(t,s)dtds (15)

the functions f (x,y)and k(x,y,t,s)are given functions. We shall assume that f (x,y) is
continuous on [0,a]x[0,b] and k(x,y,t,s) is continuous on
E ={(x,y,t,s):0<t <x <a,0<s <y <b}and that it satisfies a uniform Lipschitz condition in u .
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In  equation (15), for x €[0,aJand y €[0,b]Jwe divideO=x,<x,<..<Xx, =8a,
0=y,<VY,<..<y, =Db be a partition of [0,a], [0,b] with the step size h, such that, x,; =ih,

y, =ih,t,=jhands, = jhfori,j=01..,N ; h =XNN_X° _
If (x,y)=(X,Y,), equation (15) becomes:
Ugo =U(X5,Yo) =F (X, Y0) (16)

Now, we can apply Simpson's rule by setting (x,y)=(x,,y,); r=2,3,..,N, Then equation (15)
take the following form :

h r
u,, =u(x,,y,)=f (xr,yr)+§Zerk(xr,yr,tj,sj)J(xj,yj) (17)
=0

The weights w ; are given by:

Woo=w, =1L w,=3-(-1)), 1<j<r-1.

where u,, =u(x,,y,) have unknown value can be computed from Day's starting procedure as the
following manner:

Define,

u, =f (x;,y,)+hk (h,h,0,0)f (x,,Y,)

u, =f (xl,y1)+ﬂ[k (h,h,0,0)f (x,,y,)*+k(h,h,h,h)u,]

u13=f<1,2,y1,2)+ [k( 00)f (Xo.Yo)+ k(%%%g)[%f( KorY o)+ 2]

Then,
h h h
u, =f (xl,y1)+g[k (h,h,0,0)f (x,,y,)+4k (h,h,E,E)u13+k(h,h,h,h)ulz] (18)

The equations (16), (17) and (18) (which are N +1 equations in u;; =u(x;,y;), 0<i <N
)represented the approximation to the solution u(x,y) of (15), and can be written as the following
system:
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U, =f (XO’yO)

h h h
u, =f (X11y1)+g[k (h,h,0,0)f (x,,y,)+4k (h,h,E,E)u13+k(h,h,h,h)ulz]

u,,=f (xz,y2)+%[k (2h,2h,0,0)u,, +4k (2h,2h,h,h)u,, +k (2h,2h, 2h, 2h)u, ]
(19)
Uy =t (x3,y3)+%[k (3h,3h,0,0)u,, +4k (30,30, h, h)u,, + 2k (3h,3h, 2h, 2h)u,,

+ k (3h|3h13h13h)u3,3]

u,, =f (xn,yn)+%[k (nh,nh,0,0)u,, +4k (nh,nh,h,h)u,, +--
+4k (nh,nh,(n =1)h,(n =Dh)u, 4 +k (nh,nh,nh,nhju, ]
5. Numerical Experiments and Discussions:
Example 1:

Consider the linear two-dimensional Volterra integral equation:

Xy
u(x,y)=xy —0.125x5y3+”xy52u (t,s)dtds (20)
00

where the exact solution is u(x,y)=xy and 0<x,y <1, here A=1, x=1. Intable (5.1)-(5.3) we

present the exact solution, the approximate numerical solutions and their corresponding errors for
some points,we suppose that N =20,50,80.

In tables (5.1)-(5.6):

u’ — approximate solution of trapezoidal rule, E' — the error of trapezoidal rule, u® —
approximate solution of Simpson's rule, E® — the error of Simpsons rule.

Case 1: N =20,

X | Y Exact sol. u’ ET u® ES

0 0 0 0 0 0 0

0.1 [ 0.1 |0.010000000 | 0.0100000268 | 2 g88x 10 0.0100000195 | 1 959x 10
0.2 [ 0.2 |0.040000000 | 0.0400025051 | 2 50514% 10 | 0.0400022467 | 2 24672% 10
0.3 | 0.3 | 0.090000000 | 0.0900375693 | 3.75693x 107 0.0900355692 | 3.55692% 107
0.4 | 0.4 | 0.160000000 | 0.1602545793 | 2 54579% 107 0.1602460440 | 2 46044% 107
0.5 | 0.5 | 0.250000000 | 0.2511040831 | 1.10408x 107 0.2510774212 | 1.07742% 107
0.6 | 0.6 | 0.360000000 | 0.3635947993 | 3.59479% 1073 0.3635248916 | 2.48916% 107
0.7 | 0.7 | 0.490000000 | 0.4995822509 | 9.58225% 107 0.4994142993 | 9.41429x% 107
0.8 | 0.8 | 0.640000000 | 0.6620428387 | 2.20428% 1072 0.6616490814 | 2.14690% 1072
0.9 | 0.9 | 0.810000000 | 0.8553186227 | 4.53186x 102 | 0.8543821368 | 4.43821x 102
1.0 | 1.0 | 1.000000000 | 1.085393572 | 8.53935% 102 1.083106343 | 8.31063x 1072

Table(5.1)
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Case 2: N =50,
X | Y Exact sol. u’ ET u’ E®
0 |0 0 0 0 0 0
0.1 | 0.1 | 0.010000000 | 0.0100000200 | 2.008x 107 0.0100000147 | 1.472x 10
0.2 | 0.2 | 0.040000000 | 0.0400022826 | 2.28269% 107 0.0400022402 | 2.24025% 107
0.3 | 0.3 | 0.090000000 | 0.0900358718 | 3.58718x 10°° 0.0900313327 | 3.13327x 10°
0.4 | 0.4 | 0.160000000 | 0.1602473909 | 2.47390% 107 0.1602460031 | 2.46003x 10™
0.5 | 0.5 | 0.250000000 | 0.2510819429 | 1.08194x 107 0.2509813232 | 9.81323% 10
0.6 | 0.6 | 0.360000000 | 0.3635387326 | 3.58732x 1073 0.3635264005 | 3.52640% 10
0.7 | 0.7 | 0.490000000 | 0.4994573408 |9 45734x 103 | 0.4986723976 | 8.67239x 1073
0.8 | 0.8 | 0.640000000 | 0.6617873619 | 2.17873x 1072 0.6616972504 | 2.16972x 1072
0.9 1 0.9 | 0.810000000 | 0.8548245433 | 4.48245x 102 | 0.8510224747 | 4.10224x 107
1.0 | 1.0 | 1.000000000 | 1.084469500 | 8.44695x 1072 1.083763894 | 8.37638x 1072

Table(5.2)

Case 3:N =80,
X |V Exact sol. u' E' u’® E°
0 0 0 0 0 0 0
0.1 | 0.1 | 0.010000000 | 0.0100000192 | 1.927x 1078 0.0100000187 | 1.876x 1078
0.2 | 0.2 | 0.040000000 | 0.0400022567 | 2 25673% 107 0.0400022401 | 2.24011x 10
0.3 | 0.3 | 0.090000000 | 0.0900356742 | 3.56742% 10> 0.0900355471 | 3.55471x 107
0.4 | 0.4 |0.160000000 | 0.1602465553 | 2 46555% 10 | 0.1602460077 | 2 46007x 10
0.5 | 0.5 | 0.250000000 | 0.2510793710 | 1.07937x 1023 | 0.2510775807 | 1.07758x 1073
0.6 | 0.6 |0.360000000 | 0.3635322220 | 3.53222x 1073 0.3635269753 | 3.52697x% 10
0.7 | 0.7 | 0.490000000 | 0.4994428404 | 9 44284% 10 | 0.4994275726 | 9 42757x 1073
0.8 | 0.8 | 0.640000000 | 0.6617577157 | 2.17577x 1072 0.6617120576 | 2.17120x 1072
0.9 [ 0.9 |0.810000000 | 0.8547672347 | 4.47672% 102 | 0.8546294729 | 4 46294 102
10 110 11 000000000 | 1.084362381 | g43623x 102 | 1.083954862 | 8.39548x 107

Table(5.3)
Example 2:

Consider the linear two-dimensional Volterra integral equation:

u(x,y)=x sin(y)+%x 2(x * cos(y) —sin?(y ) —x 3)+]-]'(xt2 +c0s(s) (t,s)dtds (21)

where the exact solution is u(x,y)=xsiny and 0<x,y <1, here A=1, x=1. In table (5.4)-(5.6)

we present the exact solution, the approximate numerical solutions and their corresponding errors for
some points, we suppose that N =20,50,80.
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X

y

Exact sol.

uT

ET

US

ES

0

0

0

0

0

0

0

0.1

0.1

0.009983341

0.0103439169

3.605752x 107

0.0102985368

3.151951x 107

0.2

0.2

0.039733866

0.0421913047

2.457438x 1073

0.0420771962

2.343330x 1073

0.3

0.3

0.088656062

0.0962145972

7.558535x 107

0.0959834699

7.327407x 1073

0.4

0.4

0.155767336

0.1722292770

1.646194x 1072

0.1718012130

1.603387x 1072

0.5

0.5

0.239712769

0.2693367370

2.962396x 107

0.2685880546

2.887528x 1072

0.6

0.6

0.338785484

0.3861185815

4.733309% 107

0.3848589634

4.607347x 107

0.7

0.7

0.450952381

0.5208094830

6.985710x 1072

0.5187401959

6.778781x 102

0.8

0.8

0.573884872

0.6713710356

9.748616x 107

0.6680103133

9.412544x 107

0.9

0.9

0.704994218

0.8353876323

1.303934x 10"

0.8299384882

1.249442x 107

1

1

0.841470984

1.009693702

1.682227x 10*

1.000809799

1.593388x 107"

Case 2:N

Table(5.4)

X

Exact sol.

UT

ET

US

ES

0

0

0

0

0

0

0.1

0.009983341

0.0103058199

3.224782x 107

0.0102431716

2.598299x% 107

0.2

0.039733866

0.0421103174

2.376451x 1073

0.0420842591

2.350393x 1073

0.3

0.088656062

0.0960866148

7.430552x 1073

0.0954390956

6.783033x 1073

0.4

0.155767336

0.1720485410

1.628120x 1072

0.1719144612

1.614712x 1072

0.5

0.239712769

0.2690929677

2.938019x 1072

0.2671246742

2.741190x 1072

0.6

0.338785484

0.3857937622

4.700827x 107

0.3853452101

4.655972x 107

0.7

0.450952381

0.5203742741

6.942189x 1072

0.5159177238

6.496534x 107

0.8

0.573884872

0.6707805384

9.689566x 107

0.6695166538

9.563178x 1072

0.9

0.704994218

0.8345759902

1.295817x 107

0.8252535362

1.202593x 107

1

0.841470984

1.008566907

1.670959x 107

1.005117920

1.636469x 107

Case 3: N =80,

Table(5.5)

X

y

Exact sol.

UT

ET

US

ES

0

0

0

0

0

0

0

0.1

0.1

0.009983341

0.0103014008

3.180591x 107

0.0102978028

3.144611x 107

0.2

0.2

0.039733866

0.0421009221

2.367056x 107

0.0420877339

2.353867x 107

0.3

0.3

0.088656062

0.0960717667

7.415704x 1073

0.0960364056

7.380343x 107

0.4

0.4

0.155767336

1720275722

1.626023% 1072

0.1719496296

1.618229% 1072

0.5

0.5

0.239712769

.2690646866

2.935191x 1072

0.2689132906

2.920052x 107

0.6

0.6

0.338785484

.3857560815

4.697059x 107

0.3854844300

4.669894x 107
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0.7 | 0.7 | 0.450952381 | .5203237946 6.937141x 102 | 0.5198586850 | 6.890630x 1072

0.8 | 0.8 | 0.573884872 | .6707120612 | 9.682718x 1072 | 0.6699347338 | 9 604986x 102

0.9 | 0.9 |0.704994218 | .8344818935 | 1.294876x 107t | 0.8331936216 | 1.281994x 10

1 |1 0841470984 | 1.008436319 | 1.669533x 101 | 1.006296852 | 1.648258x 107!
Table(5.6)

6. The Conclusion:

From the previous discussions we conclude the following:

1) As X and vy isincreasing in [0,1]x[0,1], the errors due to trapezoidal rule and Simpson's rule

are also increasing.

2) AsN is increasing, the errors are decreasing.

3) The errors due to the Simpson's rule less than the errors due to the trapezoidal rule.(i.e.

Simpson's rule better than trapezoidal rule).
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