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Abstract

Effects of many medical procedures appear after a time lag, when a significant change occurs in
subjects’ failure rate. This paper focuses on the detection and estimation of such changes which
is important for the evaluation and comparison of treatments and prediction of their effects.
Unlike the classical change-point model, measurements may still be identically distributed,
and the change point is a parameter of their common survival function. Some of the classical
change-point detection techniques can still be used but the results are different. Contrary to
the classical model, the maximum likelihood estimator of a change point appears consistent,
even in presence of nuisance parameters. However, a more efficient procedure can be derived
from Kaplan-Meier estimation of the survival function followed by the least-squares estimation
of the change point. Strong consistency of these estimation schemes is proved. The finite-
sample properties are examined by a Monte Carlo study. Proposed methods are applied to a
recent clinical trial of the treatment program for strong drug dependence.
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1. Introduction

Change-point models studied in clinical research usually refer to changes in the failure rate. Many articles
and clinical reports describe situations when after a certain survival period, the failure rate is expected
to change due to the treatment or during the after-treatment recovery. Detection of such changes, their
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estimation, and their comparison between different groups of patients (the treatment arm and the placebo
arm is the classical example) are important understanding the treatment’s effect and for the evaluation of
the treatment’s success. Survival times in this example have a higher initial failure rate and a lower failure
rate afterwards. Similar examples are found in [3, 4, 5, 6, 7, 8, 9].

This situation is conceptually and mathematically different from the classical change-point model, see
e.g. [10, 11, 12, 13, 14], where observations follow one distribution before the change point and another
distribution after it. In the described scenario, with one or several changes in the failure rate, all the
subjects are assumed to have the same distribution. Each change point is understood as a parameter of this
distribution that separates two patterns, two different models for the failure rate, and typically, it is the
moment of a “clinically significant” reduction of the failure rate.

2. Survival models with change points

We assume a constant failure rate function λ(x) = λ0 until an unknown time τ . Change occurs at time τ ,
and λ(x) shifts to a new value λ1 and remains at it thereafter. Thus,

λ(x) = λ01x≤τ + λ11x>τ (1)

where λ0 > 0, λ1 > 0, and τ is the change point, the main parameter of interest.

3. Maximum likelihood estimation

Under model (1), the likelihood function of X1, ..., Xn is

F (x1, ..., xn|λ0, λ1, τ) = λ(x) exp

{
−
∫ x

0

λ(t)dt

}
=

∏
δi=1

(λ0e
−λ0xi1xi≤τ + λ1e

−λ0τ−λ1(xi−τ)1xi>τ )×
∏
δi=0

(e−λ0xi1xi≤τ + e−λ0τ−λ1(xi−τ)1xi>τ ),

which yields the log-likelihood ratio

Λ(τ) =
∑
i≤n

{
δi

(
log

λ1

λ0
− (xi − τ)(λ1 − λ0)

)
1xi>τ + (1− δi)(xi − τ)(λ0 − λ1)1xi>τ

}
=
∑
i≤n

yi (2)

where

yi =


logλ1

λ0
+ (λ0 − λ1)(xi − τ) for τ < xi and δi = 1

(λ0 − λ1)(xi − τ) for τ < xi and δi = 0
0 otherwise

(3)

4. Least squares method based on Kaplan-Meier estimation

In this Section, we introduce a different change-point estimation procedure which is based on Kaplan-Meier
estimator of the survival function. Since the Kaplan-Meier method is nonparametric, the change-point
estimation scheme proposed here can be easily extended to a wide variety of survival models with change
points arising in clinical trials and other applications.

Kaplan and Meier (1958) proposed a famous estimator for the survival function S(t):

S̃n(x) =
∏

x(j)≤x

(
n− j

n− j + 1

)δ(j)
(4)

This is a step function with jumps at observations Xi for which δi = 1. It is a nonparametric estimator of
the survival function, and it can be applied in presence of censoring. No assumptions are required for the
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probability distribution other than the independence between the survival and censoring variables. Kaplan-
Meier estimator (4) has the following properties:

1. It is the nonparametric maximum likelihood estimator of the true survival function S(x).

2. It has an asymptotically normal distribution for any x where S(x) is continuous.

3. It converges almost surely to S(x) uniformly in x, and for each ε > 0, there exists c > 0, such that
P(|S̃n(x)− S(x)| > ε) ≤ e−nc for sufficiently large n. Refer to [20] for details.

4. If no censoring occurs or all variables are censored at the same time, then the Kaplan-Meier estimator
reduces to the usual empirical distribution function.

4.1. Least squares estimation and strong consistency

Under the piecewise constant failure rate model (1) with a change point τ , the logarithm of the survival
function at the time xi is given as

Li(τ, λ0, λ1) = logS(xi) = −λ0xi1xi≤τ − (λ0τ + λ1(xi − τ))1xi>τ

Let θ = (λ0, λ1, τ) denote the vector of parameters. Its least squares estimator θ̃ = (τ̃ , λ̃0, λ̃1) consists of
those values of τ , λ0, and λ1 that minimize the error sum of squares

ESS(θ) =

n∑
i=1

(ỹn(xi)− Li(θ))2, (5)

where

ỹn(xi) = log S̃n(xi) =
∑

x(j)≤xi

δ(j) log
n− j

n− j + 1
(6)

Lemma 1. At θ = θ̃, the error sum of squares components satisfy the strong law of large numbers; that is,
1
nESS(θ̃) converges to 0 almost surely, as n→ 0.

The proof can be found in the Appendix.
To prove the strong consistency of the vector of least squares estimators τ̃ , λ̃0, λ̃1, we express 1

nESS(θ̃)
in terms of the residual αn(x),

ESS(θ̃) =
∑
xi≤τ̃

(ỹn(xi) + λ̃0xi)
2 +

∑
xi>τ̃

(ỹn(xi) + λ̃0τ̃ + λ̃1(xi − τ̃))2

=
∑

xi≤min(τ̃ ,τ)

(−λ0xi + λ̃0xi + αn(xi))
2 +

∑
xi≥max(τ̃ ,τ)

(−λ0τ − λ1(xi − τ) + λ̃0τ̃ + λ̃1(xi − τ̃) + αn(xi))
2

+
∑

τ̃<xi≤τ

(−λoxi + λ̃0τ̃ + λ̃1(xi − τ̃) + αn(xi))
2 +

∑
τ<xi≤τ̃

(−λoτ − λ1(xi − τ) + λ̃0xi + αn(xi))
2.

= An +Bn + Cn +Dn, (7)

where

An =
∑

Xi≤min(τ̃ ,τ)

(−λ0xi + λ̃0xi)
2,

Bn =
∑

Xi≥max(τ̃ ,τ)

(−λ0τ − λ1(xi − τ) + λ̃0τ̃ + λ̃1(xi − τ̃))2,

Cn =
∑

τ̃<Xi≤τ

(−λ0xi + λ̃0τ̃ + λ̃1(xi − τ̃))2,

Dn =
∑

τ<Xi≤τ̃

(−λ0τ − λ1(xi − τ) + λ̃0xi))
2.
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The uniform convergence of αn(x) and the strong law of large numbers in [21] imply directly that

An/n
a.s.−→ 0, (8)

Bn/n
a.s.−→ 0, (9)

Cn/n
a.s.−→ 0, (10)

Dn/n
a.s.−→ 0. (11)

Since we assume that there is indeed a change-point, it is reasonable to make the following assumption.
Assumption (A): There exist known 0 < m < M such that τ0 ∈ [m,M ].

Theorem 1. λ̃0 is strongly consistent for λ0 under Assumption (A).

The proof can be found in the Appendix.

Theorem 2. τ̃ is strongly consistent for τ under Assumption (A).

Proof. (i) We will prove P(τ̃ → τ ∩ τ̃ > τ) = 1 in this part.
We prove by contradiction. Suppose for any ε > 0, there exist δ > 0 and N(ε) such that

P (τ̃ − τ > ε ∩ τ̃ > τ) > δ for all n > N(ε). (12)

From Theorem 1 and (11), we get

1

n

∑
τ<Xi≤τ̃

(xi − τ)2(λ0 − λ1)2 a.s.−→ 0 (13)

From (12), we have

P

 ∑
τ<Xi≤τ̃

(xi − τ)2 >
∑

0<Xi−τ≤ε

(xi − τ)2

 > δ

for all n > N(ε).
Also,

1

n

∑
0<Xi−τ≤ε

(xi − τ)2 a.s.−→ E(X − τ)210<X−τ≤ε > 0.

Hence, for sufficiently large n,

P

 1

n

∑
τ<Xi≤τ̃

(xi − τ)2 >
1

n

∑
0<Xi−τ≤ε

(xi − τ)2 >
1

2
E(X − τ)210<X−τ≤ε > 0

 > δ/2,

which contradicts (13).

(ii) We will prove P(τ̃ → τ ∩ τ̃ ≤ τ) = 1 in this part.
We also prove this by contradiction. Suppose for any ε > 0, there exist δ > 0 and N(ε) such that

P (τ̃ − τ > ε ∩ τ̃ ≤ τ) > δ (14)

for all n > N(ε).
Then

P

 1

n

∑
τ̃<Xi≤τ

(xi − τ̃)2 >
1

n

∑
τ−ε<Xi≤τ

(xi − τ + ε)2

 > δ

for all n > N(ε).
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Also,
1

n

∑
τ−ε<Xi≤τ

(xi − τ + ε)2 a.s.−→ E(X − τ + ε)21τ−ε<X≤τ > 0.

Hence,

P

 1

n

∑
τ̃<Xi≤τ

(xi − τ̃)2 > 0

 > δ for n→∞

From (10) and Theorem 1, we can get

P(λ̃1 → λ0) > δ for n→∞

Hence

P

(
1

n
ESS(θ̃)− 1

n

n∑
i=1

(−λ0τ − λ1(xi − τ) + λ0xi)
2 → 0

)
> δ,

whereas

1

n

n∑
i=1

(−λ0τ − λ1(xi − τ) + λ0xi)
2 =

1

n

n∑
i=1

(xi − τ)2(λ0 + λ1)2

a.s.−→ (λ0 + λ1)2E(x− τ)21X>τ > 0.

Hence

P

(
1

n
ESS(θ̃) >

1

2n

∑
(−λ0τ − λ1(xi − τ) + λ0xi)

2 > 0

)
> δ/2

for sufficiently large n, which contradicts Theorem 1.
Combining (i) and (ii) gives

P(τ̃ → τ) = 1.

Theorem 3. λ̃1 is strongly consistent for λ1 under Assumption (A).

The proof can be found in the Appendix.

4.2. Convergence rate of the least squares estimator

Now let us investigate the convergence rate of τ̃ for known λ0 and λ1. We will analyze the probability that
ESS(τ) is less than ESS(τ0) for τ outside of the ε-neighborhood of τ0, where τ0 is the true value of the change
point.

Theorem 4. For any ε > 0, there exists c > 0, such that

P

 ⋃
τ :|τ−τ0|>ε

{ESS(τ)− ESS(τ0) < 0}

 ≤ e−nc
for sufficiently large n.

The proof can be found in the Appendix.

Corollary 1. The change-point estimator τ̃ is strongly consistent; τ̃ → τ0 almost surely as n → ∞. In
particular, for any ε > 0, there exists c > 0 such that

P (|τ̃ − τ0| > ε) ≤ e−nc

for sufficiently large n.
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Proof. According to Theorem 4, for any arbitrary sequence εj > 0, εj ↓ 0 as j ↑ ∞, there exists c(εj) > 0
such that P (αn ≥ εj) ≤ e−nc(εj). Hence

∞∑
n=1

P

 ⋃
τ :|τ−τ0|>εj

{ESS(τ)− ESS(τ0) < 0}

 ≤ ∞∑
n=1

e−nc(εj) =
e−c(εj)

1− e−c(εj)
<∞

Since the sum of probabilities converges, by the Borel-Cantelli lemma, with probability one, ESS(τ) ≥
ESS(τ0) for all τ : |τ − τ0| for sufficiently large n. Therefore, τ̃ , the minimizer of ESS(τ), belongs to the
εj-neighborhood of τ0 almost surely and all sufficiently large n.

It remains to let εj go to zero over a countable set (e.g., εj = 1/j). For each j, we obtain that |τ̃−τ0| ≤ εj
almost surely. Therefore, τ̃ → τ0 a.s., as n→∞.

5. Least squares method for the Cox proportional hazard model
with a change point

Generalizing the previous results, in this Section we develop change-point estimation techniques for a more
general model, Cox proportional hazard model with a change point. Under this model, the hazard rate
function has the form,

h(x|Z) = h0(x) exp(β′0Z)1x≤τ + h1(x) exp(β′1Z)1x>τ (15)

where Z is a vector of covariates (z1, ..., zk), β′0, β
′
1 are vectors of coefficients, and h0(x), h1(x) are baseline

hazard rates. Clearly, a model with covariates allows to study effects of numerical and categorical factors on
the occurrence of a change point and to compare change points between subpopulations.

It is well known that Cox proportional hazard model is semiparametric. Indeed, it puts no assumptions
on the form of baseline hazard rates h0(x) and h1(x) (nonparametric part of model) but assumes a parametric
form of the effect of covariates on the hazard.

Introduce the following notations:

- λ0(x|Z) = h0(x) exp(β′0Z) is the hazard function before the change point;

- λ1(x|Z) = h1(x) exp(β′1Z) is the hazard function after the change point;

- F (x1, ..., xn|Z) is the joint likelihood function under model (15);

- Λ(τ |Z) is log-likelihood ratio under model (15);

- S(x|Z) is survival function under model (15);

- Θ = (τ, β0, β1) is the unknown parameter vector;

- Θ̃ is the least squares estimator of Θ which, similarly to Section 4.1, minimizes the error sum of
squares based on the differences between the log-survival functions obtained from model (15) and from
the Kaplan-Meier estimator (4).

Under model (15), the survival function is expressed as

S(x|Z) = exp

(
−
∫ x

0

λ0(s|Z)ds

)
1x≤τ + exp

(
−
∫ τ

0

λ0(s|Z)ds−
∫ x

τ

λ1(s|Z)ds

)
1x>τ ,

so that

Li(τ |Z) = logS(xi|Z) = −
∫ xi

0

λ0(s|Z)ds)1xi≤τ −
(∫ τ

0

λ0(s|Z)ds+

∫ xi

τ

λ1(s|Z)ds

)
1xi>τ .
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The least squares estimator Θ̃ = (τ̃ , β̃0, β̃1) of the change point τ0 and slopes β0 and β1 is then defined
as the minimizer

Θ̃ = arg min
Θ

ESS(Θ|Z)

of the error sum of squares

ESS(Θ|Z) =

n∑
i=1

(ỹn(xi)− Li(τ |Z))2, (16)

where components ỹn(xi) are defined in (6).

5.1. Strong consistency and convergence rate of the least squares estimator

Extention of the results of Section 4 on the strong consistency of the change point estimator and estimators
of the nuisance parameters to Cox proportional hazard model is straightforward. Indeed, the uniform strong
consistency of the Kaplan-Meier estimator holds for any type of the underlying distribution of survival times.
Therefore, the error sum of squares can be split into four parts as in (7), with almost sure convergence holding
for each part.

Along the same lines as in the constant hazard rate model, we obtain the following results.

Lemma 2. At Θ = Θ̃, components of the error sum of squares (16) satisfy the strong law of large numbers;
that is, 1

nESS(Θ̃|Z) converges almost surely to 0 as n→ 0.

Theorem 5. With known β0 and β1, the change-point estimator τ̃ is strongly consistent. It converges to
the true change point τ0 at the same rate as in the constant hazard rate model; i.e., for any ε > 0,

P (|τ̃ − τ0| > ε) ≤ e−nc

for some c > 0 and all sufficiently large n.

Proof. The proof is similar to the proof of Theorem 4.5 and Corollary 4.6 of Section 4.2.

The following results show that the strong consistency of τ̃ holds even without the assumption of known
slopes β0 and β1.

Theorem 6. The estimated slopes β̃0 and β̃1 are strongly consistent for β0 and β1 under Assumption (A).

Theorem 7. Under unknown slope parameters β0 and β1, the change-point estimator τ̃ is strongly consistent
under Assumption (A).

Strong consistency of τ̃ and β̃i in presence of nuisance parameters is proved by the techniques developed
in Section 4.1 and essentially along the same lines. For details, see [22], chapter 5.

6. Comparison of estimators

In classical cases, under the usual regularity assumptions, the maximum likelihood estimator is asymp-
totically the uniformly minimum variance unbiased estimator. Change-point models violate the regularity
conditions because of the discontinuity of the likelihood function at the change-point parameter. As a result,
the maximum likelihood estimator may no longer be optimal.

An example of ESS, a piecewise polynomial function, is depicted in Figure 1.
Table 1 lists the estimates of τ0, λ0, and λ1 for different sample size and different actual failure rates.

Table 2 lists the mean square errors for estimates of τ0, λ0, and λ1. These estimates and mean square errors
lead to the following conclusions:

1. Both MLE and LSE of τ0, λ0, and λ1 converge to the true change point and hazard rates as the sample
size increases.

2. Both MLE and LSE become more accurate when the difference between λ0 and λ1 is increased, holding
the sample size constant.
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Figure 1: Error sum of squares and the least squares estimator of the change-point

MLE LSE
λ0 λ1 Sample Size

τ0 λ0 λ1 τ0 λ0 λ1

0.3 0.1 100 2.8 0.33 0.150 3.925 0.239 0.159
200 2.701 0.315 0.156 5.117 0.233 0.157
300 2.979 0.312 0.147 5.917 0.222 0.155

0.25 0.15 100 2.809 0.271 0.173 3.860 0.234 0.188
200 2.93 0.263 0.176 3.808 0.254 0.184
300 3.146 0.262 0.171 4.232 0.251 0.182

0.2 0.15 100 3.44 0.208 0.161 4.136 0.212 0.169
200 3.403 0.208 0.159 4.72 0.225 0.166
300 3.261 0.208 0.158 5.111 0.242 0.164

Table 1: Estimates of τ0, λ0, and λ1 from Simulated Data

3. The LSE of τ0 has a lower bias than the MLE for the same sample size and the same failure rates.
The mean squared error of the LSE of τ0 is larger than that of the MLE, for the same sample size and same
failure rates, however, the hazard rates are estimated by the LSE method with the same or lower mean
square error.

7. Example: Prometa clinical trial

In this section, we apply both the maximum likelihood method and the least squares method to a recent
clinical trial for treating methamphetamine-dependent patients conducted by Research Across America, an
outpatient clinical research center in Dallas, Texas [17].

Fifty patients participated in an open-label study over the time frame of 84 days. In this study, all of the
participants were long-term users of methamphetamine. After the screening visit on day 0, patients received
five infusions during the first three weeks and conducted 14 follow-up visits.

Later, a double-blind, placebo-controlled study was conducted to better evaluate the effect of treatment.
In the double-blind study, neither the participants nor the clinicians knew which patients belong to which
treatment arm. The reason for blinding and placebo controls is to determine (as much as possible) whether
the effects observed in the study are due to the treatment itself and not other factors. For each participant,
the survival time is the time to relapse, which is the duration of time without the use of drugs.

Our goal here is to detect the after-treatment effect of Prometa, which results in a significant reduction
of failure rate some time after the first three infusions. We detect such changes with both the maximum
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MSE for MLE MSE for LSE
λ0 λ1 Sample Size

τ0 λ0 λ1 τ0 λ0 λ1

0.3 0.1 100 10.005 0.112 0.025 15.919 0.059 0.026
200 7.98 0.101 0.025 29.864 0.059 0.025
300 9.7615 0.098 0.022 38.455 0.055 0.024

0.25 0.15 100 10.239 0.076 0.031 16.177 0.057 0.036
200 9.549 0.07 0.032 20.361 0.077 0.034
300 11.238 0.069 0.03 25.67 0.071 0.033

0.2 0.15 100 12.609 0.044 0.028 19.848 0.055 0.03
200 12.799 0.044 0.026 29.5 0.064 0.028
300 12.161 0.044 0.025 34.978 0.038 0.027

Table 2: Mean Squared Errors of Estimates of τ0, λ0, and λ1

Open-label Study Male Group Female Group
τ λ0 λ1 τ λ0 λ1 τ λ0 λ1

MLE 13 0.1402 0.0105 8 0.1649 0.0201 17 0.1387 0

LSE 14.2 0.1281 0.0142 14 0.1494 0 13 0.1495 0

Table 3: Estimates of τ, λ0, λ1 for Open-label Study

likelihood method and the least squares method. Results are listed in Tables 3 and 4.
First, we estimate the change point for the 50-subject open-label study.
(1) Using the maximum likelihood method, day 13 maximizes the log-likelihood ratio in Figure 2, left.

The likelihood ratio test provides a p-value of 1.5067 ·10−11, which is low enough to reject the null hypothesis
”there is no change point”. On the day of the change, the failure rate drops from 0.1402 to 0.0105. Thus,
we conclude that the failure rate after taking the drugs reduces significantly from 0.1402 to 0.0105 if the
patients do not use drugs for 13 days following the treatment.

(2) Using the least squares method, the estimate for change point is 14.2373 and the failure rate drops
from 0.1281 to 0.0142, which are very close to the results from maximum likelihood estimate. The graph of
error sum of squares is in Figure 2, right.

Change points for the female and male groups are compared to see whether occurrence of a change point
depends on gender.

(1) Using the method of maximum likelihood, the estimated change points for males and females are 8
and 17 from Figure 3, left. However, the likelihood ratio test fails to detect a significant difference between
the genders with the p-value of 0.3203, i.e., there is no evidence that there are any significantly different
change points for males and females. The failure rate reduces from 0.1649 to 0.0201 for males and from
0.1387 to practically 0 for females.

Prometa Group Placebo Group
τ λ0 λ1 τ λ0 λ1

MLE 13 0.0781 0.0139 18 0.1145 0.0532
LSE 17 0.0720 0 14 0.1255 0.0016

Table 4: Estimates of τ, λ0, λ1 for Two-armed Double-blind Study

10
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Figure 2: Least squares estimate of change-point for open-label study

Figure 3: Least Squares estimate of change-point for female and male groups

(2) Using the least squares method, the change-point estimator for males is about day 14 and the failure
rate reduces from 0.1494 to almost 0, while the change-point estimator for females is 13 and the failure rate
reduces from 0.1495 to almost 0. We can see that there is almost no difference between male group and
female group in change-point estimators from graph 3, right.

Finally, we estimated the change points for the randomized double-blind placebo-controlled study. Change
points are estimated separately for the active treatment group and for the placebo group.

(1) The graph of log-likelihood ratios is in Figure 4, left. The estimated change point for the treatment
group is 13, and the failure rate reduces from 0.0781 to 0.0139. For the placebo group, the change-point
estimate is 18, and the failure rate reduces from 0.1145 to 0.0532. The likelihood ratio test shows that these
two groups have significantly different change points with p-value 0.0098.

(2) With the least squares method, the change-point estimator for the treatment group is around day 17
and the failure rate reduces from 0.0720 to almost 0, while the change-point estimator for Placebo is around
14 and the failure rate reduces from 0.1255 to 0.0016. The graph for error sum of squares is in 4, right.

As a result, besides statistical significance, existence of change-points in the survival curves for both
treatment groups has important clinical significance. It shows a drop in the risk of relapse after a certain
period of abstinence. Although the MLE and LSE methods slightly disagree on the exact location of change-
points in the two treatment groups, both methods show that the after-change failure rate is significantly
lower for the active treatment groups. Essentially, a patient has to abstain from methamphetamine for two
weeks after receiving the treatment, and then the failure rate reduces significantly.
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Figure 4: Least Squares estimate of change-point for Prometa and Placebo groups
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