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Abstract  

This work applies copula modeling to estimate the degree of dependence among the nine major equity 
markets from the Western Hemisphere, seven emerging markets from Latin America (Argentina, Brazil, Chile, 
Colombia, Peru, Venezuela, Mexico) and the two mature markets from   North America (Canada, United 
States). The relevance of copula-measured dependence is assessed estimating Value at Risk for bilateral 
portfolio investments, comparing it with conventional VaR methodologies. The data encompass daily time 
series for the 1992-2009 period.  

Keywords: Copula; Value at Risk; Stock Markets North America.  

 

1.   Introduction 

Two important dimensions about equity markets concern their degree of association and its impact on risk. This paper 

analyzes these problems for the case of the stock markets from the Americas. It assesses and compares their levels of 

association, and estimates potential losses for bilateral investments in these markets.  

Two important theories to deal with these issues are copula theory and Value at Risk. Their applications have been 

basically limited to examine the case of developed markets. Literature dealing with dependence and it is application to 

VaR analysis is practically absent for the case of the emerging markets concerning their relationship among themselves, 

as well as with their relationship with developed markets.  This study is a contribution in this respect. It applies copula 

theory to determine the degree of dependence between nine stock markets from the Americas and makes use of this 

methodology to estimate potential losses via VaR analysis.  The capital markets considered in this paper are from North 

America: United States, Canada and Mexico; and from South America: Argentina, Brazil, Chile, Colombia, Peru and 

Venezuela. Daily data for the 1992-2009 period is employed.  

The work is structured in four sections in addition to this introduction. Section 2 presents a literature review stressing 

recent works dealing with applications of copula theory about stock markets and risk evaluation. Section 3 details the 

methodology detailing copula theory and four alternatives for Value at Risk: Delta Normal; Historical Simulation; 

Conditional Volatility VaR (VaR-GARCH), and Monte Carlo  Simulation VaR (MCS- VaR).  Section 4 advances the 

empirical analysis. Finally, Section 5 concludes the work. 

2.   Literature Review 

Modeling with copulas has been used widely for multiple applications in actuarial, economic and financial studies. 

Copula theory was introduced over sixty years ago as a means to isolate the dependence structure among distribution 

functions. Partial solutions were fists advanced by Hoedfing (1940; 1941), Frétchet (1951), Dall’Aglio (1956) among 
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others, Sklar (1959) consolidated those advances   creating a new class of distributions whose margins are uniform in 

(0,1). He introduced the idea and the name of copula and its respective theorem now bears his name.  

Concerning dependence between stock markets, copula theory has been applied widely.  Hu (2003) examines the 

structure of dependence, rather than the degree of dependence for a sample of international markets and Kole, Koedijk 

and Verbeek (2005) analyze patterns of dependence between financial markets via copula.   Samitas, Kenourgios and 

Paltalidis (2007) introduce a multivariate time-varying copula with Markov switching parameters to capture non-linear 

relationships for the BRIC countries plus United States and United Kingdom.  Their evidence shows that during 

turbulent periods dependence increases. Chan-Lau, Mathieson and Yao (2004), Gonzalo and Olmo (2005) and Lopez 

(2006) and Messaud and Aloui (2015) have conducted contagion studies about financial markets through copula 

methodology. Ning (2012) explore the dependence structure between the equity market and exchange rates using several 

copulas with different dependence structures; her findings reveal a significant upper and lower dependence for these two 

markets.   Boubaker and Sghaier (2014) determine dynamic dependence between the U.S.  and other developed stock 

markets using an extreme value time-varying copula approach, for a period that includes the 2007-2009 crisis. Their 

empirical evidence suggest that dependence between the US and Japanese market is symmetric while dependence 

between the US and European markets is asymmetric. 

Risk analysis, applying copula theory has also been dealt with in the financial literature. Nguyen and Huynh (2015) 

present two VaR estimation models for six currencies; each return series is assumed to follow an ARCH (1,1) - GARCH 

(1,1) model; innovations are simultaneously generated using Gaussian copula and student-t copula.  Bob (2013) estimate 

VaR for a portfolio combining copula functions, Extreme Value theory, and GARH models; countries included in the 

portfolio are Germany, Spain, France, and Italy. Reyes and Ortiz (2013) analyze VaR for the stock markets from the 

North American Free Trade Agreement (NAFTA) bloc. Their analysis of trinational portfolios apply a multivariate 

GARCH model.  Hsu, Huang and Chiou (2011) assess portfolio risk for six Asian markets using copula-extreme value 

based on semiparametric approaches. Monte Carlo VaR simulation suggests that the Clayton copula EVT yields the best 

results regardless of the shapes of the return distributions.  Torres and Olarte (2009) employ copula modeling for VaR 

analysis. Embrechts, Höing and Pucceti (2005) used copula methodology to create diverse scenarios for VaR analysis, in 

order to identify the worse situation. Rank (2007) demonstrates the reliability of copula methodology for VaR analysis 

using the Monte Carlo approach. He applied copula theory to create various scenarios of VaR. Shim, Lee, MacMinn 

(2011) apply a copula approach to measure economic capital, Value-at-Risk and expected shortfall. Along similar 

research lines deserve to be mentioned some works about portfolio optimization. Krzemienowski and Szymczyk, (2016) 

optimize portfolios applying a copula based extension of conditional value at risk. Yingying, Pu, and Xang (2016) 

examine correlations and risk contagion between mixed assets and mixed-asset portfolio VaR measurements. Their 

methodology follow a dynamic view based on time varying copula models.  

It should be noted that most studies analyze the case of developed financial markets; copula studies on emerging markets 

are still scarce. Some early studies include research by Hotta, Luke and Palaro (2008) and Ozun and Cifter (2011) who 

used copula theory in VaR valuation about Latin American emerging market portfolios.  More recently,    Chebbi, and 

Hedhli (2014) study comovements between the Tunisian, US French and Moroccan stock markets.  Hussain and Li 

(2015) use extreme value theory to model dependence structures between the Chinese stock market and the US, UK, 

Japan, Hong Kong and Taiwan market. Finally, Lopez-Herrera, Santillan-Salgado and Cruz Ake (2016) examine 

volatility dependence structure between the Mexican and the world capital market. They employ a bivariate VECM in 

the mean, a VARMA-GARCH model with dynamic conditional correlation and finally fit a Clayton copula returns on 

two volatility regimes.  

3.   Methodology 

Copula Theory 

i. Definition 

A function   [   ]  [   ] is a n-copula with the following properties: 

      [   ]  (             )   . 

       [   ]  (       )    if at least one of the      equals zero. 

 positive.   is defined and  -increasing, i.e.,  -volume of each box whose vertices are located in [   ]  is  

It follows from this definition that a copula is a multivariate distribution function over the range [   ]  with uniform 

margins. In other words, copula is defined as a multivariate distribution function defined in the unitary cube [   ]  
[   ] with margins uniformly distributed. This definition is very natural if taking into account how it is derived a copula 

from a multivariate continuous distribution; in fact, in this case the copula is simply the original multivariate distribution 

function with a transformation to a univariate margin.   
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Sklar’s Theorem 

Let   a  -dimensional distribution function with continuous margins       , exists a unique  - copula   [   ]  
[   ], such that  

 (       )   (  (  )     (  ))           ( ) 

Therefore, copula combines the margins to form multivariate distribution function. This theorem provides a 

parameterization of multivariate distribution and construction scheme of copulas. In fact, given a distribution   with 

multivariate margins        , the function,       

 (       )   (  
  (  )     

  (  ))          ( ) 

is automatically a n-copula. This copula is the copula of multivariate distribution . 

From the Sklar’s theorem, is known that for any multivariate distribution function can be easily derived as a copula. 

Although there are a considerable number of copulas, only a few family copulas play an important role. Among copula 

families this work relies on the family of elliptical copulas.    

ii. Elliptical Copulas 

Elliptical copulas
1
 are those have had ample application about financial markets. Peculiarity of these copulas is that they 

are associated with random variables whose multivariate distribution function is symmetric; this leads to level sets of 

elliptical shape. Within this family of copulas two of the most important are the normal copula (Gaussian copula) and t-

Student copula; which derive multivariate distribution functions that have the same names.      

Normal Copula. Normal copula is the copula derived from multivariate normal distribution. Normal copula provides a 

natural generalization of multivariate normal distributions. 

  denotes the normal distribution (cumulative) and      denotes the  -dimensional standard normal distribution with 

correlation matrix  .  

Normal  -copula with correlation matrix   is: 

    (     )      ( 
  (  )  

  (  ))          ( ) 

Whose density is: 

    (     )  
 

√    
    ( 

 

 
  ( )(      ) ( ))          ( ) 

with    ( )  (   (  )  
  (  )) 

Normal copula is completely determined by knowledge of the correlation matrix coefficient .  

t-Student Copula. t-Student copula is derived from the multivariate t-Student distribution. T-Student copula provides a 

natural generalization of multivariate t-Student distributions.   

Let        a  -dimensional t-Student distribution with   degrees of freedom and correlation matrix  , 

       
 

√    
  
 (
   
 
)

 (
 
 
) (  )  ⁄

 ∫ ∫
  

(  
      
 

)

   
 

  

  

  

  

           ( )  

              t-Student copula is: 

      (     )        (  
  (  )   

  (  ))          ( ) 

where    is the univariate t-Student distribution with   degrees of freedom.  

Density of t-Student copula is: 

                                                           
1
 Elliptical copulas are derived from multivariate elliptical distributions (Johnson and Kotz, 1972). 
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with     (  
  (  )   

  (  )) 

Description of t-Student copula is based on two parameters: the correlation matrix coefficient  , like in the case of 

normal copula, and also in the number of degrees of freedom  .   

iii. Dependence Measure with Copulas 

Let    and    random variables with continuous margins distribution function    and    and joint distribution function 

 . It is interesting to examine whether traditional notions of dependence such as Pearson’s correlation  , and Kendall   
and Spearman    rank correlations can be expressed in terms of copulas. 

Pearson’s correlation is given by: 

 (     )  
∬ [ (     )      ]    

 (  )
 

 
   

 (  )

  (  )  (  )
          ( )  

Kendall’s correlation is given by 

  (     )   ∬ (     )   (     )

 

 

            ( ) 

Spearman’s correlation is given by 

   (     )    ∬[ (     )      ]   

 

 

             (  ) 

We can see that Kendall and Spearman rank correlations are functions that depend on copula of    and   , while the 

Pearson’s linear correlation coefficient also depends on the margins. In the case of elliptical copulas exists a relationship 

between rank correlation and linear correlation. If (     ) has a bivariate elliptical copula and continuous arbitrary 

margins. Rank correlations are:   

  (     )  
 

 
                 (  ) 

and 

   (     )  
 

 
      

 

 
           (  ) 

Where   is the correlation between    and   .  

Relationship between Kendall   and Pearson’s   given in the above equation, is general for copulas of all elliptical 

distributions, such as normal copula and t-Student copula. This can be used to construct a linear correlation robust 

estimator. Simply replacing the empirical value of Kendall   in the previous equation and solving for  , we have 

 ̂     (
 

 
  ̂)          (  ) 

iv. Estimated Copula Parameters 

There are several methodologies for estimating the parameters associated to copula. Only two of them are mentioned, 

which are used in estimating the parameters of the elliptical copulas proposal.    

a) Concordance Measures 

This methodology is based on the relationship between concordance measures (rank correlation coefficients) and 

the copula parameters; in other words, between nonparametric correlation measures analyzed in this paper, which 

are Spearman and Kendall correlation coefficients, versus copula parameters. 
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b) Maximum Likelihood 

This mechanism can be applied to estimate any copula family because can get the estimation of copula parameters by 

maximizing its log-likelihood function. The following explains in detail: 

Let   a copula, such that,    

 (       )   (  (  )     (  ))          (  ) 

with density function, 

 (       )   (  (  )     (  ))  ∏  (  )

 

   

          (  ) 

Therefore, maximum likelihood estimation mechanism is defined as: 

Let   a r.v.i.i.d. vector with multivariate distribution function   and continuous margins distribution function       ; 

log-likelihood function is defined,   

 ( )  ∑   (  (    )     (    ))

 

   

 ∑∑    (    )

 

   

 

   

          (  ) 

where   are the parameters set, both marginal and copula. Thus, given the marginal set and a copula, the log-likelihood 

function can be maximized obtaining the maximum likelihood estimator, 

 ̂       
   

 ( )          (  ) 

Value at Risk 

Value at Risk (VaR) is a concept developed in the financial framework of risk management. VaR comes from the need to 

quantify with a given significance level or uncertainty the amount or percentage of loss that a portfolio will face in a 

predefined period of time (Jorion 2010, Penza and Bansal 2001, Best 1998, Dowd 1998, Holton, 2016).   

VaR concept incorporates three factors: a) a time horizon, i.e., a risk manager might be concerned about potential losses 

whether for a day, week, etc.; b) an associated probability, i.e., VaR represents the potential losses over a given period of 

time with a given probability; and c) an amount of money to investing.    

i. Value at Risk Definition 

VaR summarizes the expected maximum loss “or worse loss” over a target time horizon within a stated confidence 

interval. 

ii. Value at Risk and Alternative Measures 

In essence, VaR is just a number expressed in monetary units (or in percentages), which indicates the maximum expected 

loss for a time horizon and a confidence level. This quantity has the characteristic that can be specified using various 

methodologies, it is therefore not only necessary to specify the parameters mentioned but also the estimation method 

used in its calculation.    

For VaR calculation, previously is required the estimate of portfolio returns to find the loss distribution that describes it; 

traditionally it has been assumed for simplicity that returns are normally distributed, but the empirical evidence indicates 

that their behavior follows other patterns so that more refined models have been created using other distributions and/or 

adjustments in volatility behavior for a better measurement of portfolio losses. 

In this paper to estimate VaR we use widely accepted methodologies in financial environment: Delta-Normal VaR, 

Conditional Volatility VaR (VaR-GARCH), Historical Simulation VaR, and Monte Carlo Simulation VaR (MC-VaR), 

and subsequently referred as Copula VaR. Each VaR methodologies have their advantages and disadvantages; the 

efficiency of each depends on its statistical and financial assumptions. Different VaR estimating will be conducted for a 

portfolio with two assets (risk factors), using daily time series returns for each asset.    

a) Delta-Normal VaR 

In 1994, J.P. Morgan through his amazing Risk Metrics methodology introduced what is known as Delta-Normal Value 

at Risk. This methodology is based on Markowitz portfolio theory. Because of its easy implementation is the most 

common in financial practice; this method is based assuming normal distribution of the data series, i.e., for its estimation 

is assumed that prices or financial assets returns are independent and identically distributed, assuming a normal 
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distribution. Along this linearity assumption is understood that volatility and correlation are stable during the time 

horizon analyzed. Delta-Normal VaR is determined as follows:                 

      √ 
      √             (  ) 

where 

    significance level (critical value) associated with normal distribution 

   asset weights vector 

    transposed    

   asset portfolio variance-covariance matrix  

    time horizon  

Resemblance to normal distribution makes that portfolio loss measurement easy because it is only necessary to estimate 

the percentile value previously selected. It should be noted that changes in portfolio can be interpreted either as gains or 

losses depending on whether it has a long or short position, i.e., which side of distribution is located. VaR estimation is 

located usually on the left side distribution, side corresponding to losses.     

b) Conditional Volatility VaR (VaR-GARCH) 

Delta-Normal VaR is based on the assumption that asset returns are normally distributed and therefore volatility of these 

returns is constant, i.e., homoscedastic; however, empirical evidence shows the opposite. To overcome this linearity 

assumption conditional volatility models we created. These models capture volatility that over time is not stable; in other 

words, capture heteroscedasticity of data series.         

Actually, there are several econometric models about conditional volatility; this research uses only GARCH 

(Generalized Auto Regressive Conditional Heteroscedasticity) model, implemented by Bollerslev in 1986. GARCH 

models estimates that conditional variance depends on two factors: square residual innovations,        
 
       

 
   , 

known as ARCH effect, with their respective autoregressive coefficients; and previous conditional variances, 

       
 
       

 
   , known as GARCH effect, with their respective autoregressive coefficients; a intercept term   , 

and an error term,   .          

 GARCH (p,q) model is expressed as follows: 

       ∑    
 
   

 

   

 ∑    
 
   

 

   

              (  )  

where   and   determine the number of lags.   

It should be mentioned that the sum of autoregressive coefficients of ARCH and GARCH effects should be less than or 

equal to 1, i.e.,             
 
  

 
    

 
  ; to ensure that the GARCH process is stationary and ergodic.  

Conditional Volatility VaR estimation
2
 is analogous to Delta-Normal VaR estimation with variance-covariance matrix 

decomposition; however here in VaR-GARCH stands the fact that volatilities matrix (standard deviations) is not based 

on historical volatilities as in Delta-Normal VaR, but this matrix is composed by GARCH volatilities, thus we have the 

following,    

 

      √ 
            √            (  )  

where 

    significance level (critical value) associated with normal distribution 

   asset weights vector 

    transposed   

    asset portfolio volatility matrix (GARCH conditional volatility matrix)  

                                                           
2
 In this research we only specify GARCH methodology, There are several ARCH models. For a comprehensive 

description of these models see Hamilton (1994), Brockwell and Davis (2009) and Sanchez and Reyes (2005). 
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   asset portfolio correlation matrix 

           asset portfolio variance-covariance matrix  

    time horizon  

c) Historical Simulation VaR 

Both Simulation VaR and Conditional Volatility VaR have properties more attractive than Delta-Normal VaR, the most 

significant property of these models is that they do not make any assumption about the structure of asset returns 

probability distribution. 

Historical Simulation VaR is based on generating risk factors (financial assets) scenarios by the observed data of a given 

period. Currently there are several methodologies for Historical Simulation VaR; however they are similar in their 

implementation mechanism and through empirical evidence has been found that hey yield similar results.
3
 

Historical Simulation algorithm used in this paper is: 

 i)   Collection of assets data that will make up the portfolio,      

   [

  
  
 
  

]           (  ) 

where    is the asset prices vector (risk factors vector). 

ii)   Through the price vector we obtain the returns vector,  

   

[
 
 
 
 
 
 
   

  
  

  
  
  
 

  
  
    ]

 
 
 
 
 
 
 

 [

  
  
 
  

]          (  )  

where    is the asset returns vector. 

iii)   Obtain the latest price and fixed as seed. Through the last price are simulated the new prices. Seed   price is 

multiplied by exponential of each returns and thus obtain a new data set, i.e.,  

  
  

[
 
 
 
    

  

    
  

 
    

  ]
 
 
 
 [

  
 

  
 

 
  
 

]           (  )   

where   
  is the simulated asset prices vector. 

iv)  To obtain losses and profits vector requires three steps. Firstly it takes initial position value,   (if it has a portfolio 

comprised of only one asset) or initial positions,            (if it has a portfolio comprised of more than one 

asset). Then, are obtained price and weight vectors; this is done by diving initial position value versus ultimate price, 

and multiplied by each of simulated prices. If it has a portfolio with more than one asset to achieve price and weight 

vectors is necessary to obtain the sum of each ratio between initial positions and their respective final prices, 

multiplied by their corresponding simulated prices: 

   

[
 
 
 
 
 
 
 
 

  
   

 

 

  
   

 

 
 

  
   

 

]
 
 
 
 
 
 
 

 [

  
  
 
  

]           (  ) 

where    is the price and weight simulated vector. 

                                                           
3
 For a detailed knowledge about different mechanisms of Historical Simulation VaR, see De Lara (2009). 
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v)   Next step forward is to obtain residual between prices and weights, and initial position value or initial position values 

to more than one asset. For the case of more than one asset is performed the residual sum of prices and weights 

vector versus their respective initial position values, thereby obtaining a losses and profits vector set.           

   [

    
    
 

    

]  [

  
  
 
  

]           (  ) 

where    is the price and weight simulated vector without order. 

Finally, prices and weights vector values without order    are sorted out  in ascending order, which yields the prices 

and weights vector,   
 . Through prices and weights vector,   

  we estimate the value at risk, in others words, VaR 

estimate is obtained through c% percentile of prices and weights vector.       

d) Monte Carlo Simulation VaR 

Monte Carlo Simulation data from 1942 and is based on the use of random numbers to create future scenarios. 

Simulation scenario consist in create a sequence of values which together form a path of the interest variable (variable to 

be analyzed), i.e., the path is formed by simulating scenarios through a wide range of possible situations.     

With respect to VaR, Monte Carlo Simulation serves to simulate scenarios on probable portfolio value for a specific 

date; in other words, the value of VaR is obtained by distributing values of portfolio simulation. This methodology does 

not take into account nonlinearity, incorporates changes over time, i.e., volatility; also captures heavy tails and extreme 

values. 

Implementation of Monte Carlo Simulation VaR is as follows:    

I)  Initially is necessary to select a stochastic model that describes the behavior prices and specify the parameters 

involved. The most common model in economic and financial literature and we will use it in this paper is geometric 

brownian motion,   

                              (  )  

where    represents the price of financial asset,     is a normally random variable with mean zero and variance   ; 
and the parameters    and    represent the instantaneous trend and volatility at the moment  , for simplicity 

henceforth it assume that these parameters are constant.  

To simulate trajectories, one must first find unique solution of stochastic equation above, which can be expressed as,   

          (        )          (  ) 

This last equation characterizes infinitesimal movements in financial asset prices. For practical reasons this last 

equation assumes discrete terms, having a small time interval  , comprising the current time   and the time target  . 

The transformation is,  

          (       √  )           (  )  

Where    is white noise, i.e., is a normally distributed random variable with mean zero and variance 1. 

II)  As a second step is necessary to generate a sequence of random numbers            to simulate the price      path. 

Thus, the simulated prices set through time horizon objective is, 

            (       √  ) 

           (       √  )             (       √  )                (       √  )           (  ) 

Expanding the previous methodology, for the case of a portfolio with more than one asset requires the following: 

i) Firstly is necessary decomposing the variance-covariance matrix of asset prices, for it takes place the Cholesky 

decomposition mechanism.
4
 Through Cholesky decomposition is obtained matrix  , which complies obtaining 

a lower triangular matrix, i.e.,  

               (  )  
where   represents a square triangular matrix with dimension,      .  

                                                           
4
 For a detailed treatment of Cholesky decomposition mechanism, see De Lara (2009). 
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ii) Next step is to create a dimensional vector       of random numbers,             , with mean zero and 

variance 1. For the specific case of this research, are generated 100,000 random numbers.Generate a set with 

normally distributed returns,    

                (  ) 
iii) where   represents a vector of dimension      , that containing the transformed normal variables.  

iv) Also, are generate a set with lognormal distributed prices,    

     
             (  ) 

where    represents a vector of dimension      , that containing the expected future prices. 

v) Once the price vector  , this is used to create the losses and gains vector   , through       , where   is 

the total portfolio position.  

vi) Similar to the case of Historical Simulation VaR, losses and gains vector values without order   , are sorted out 

in ascending order, resulting the losses and gains vector simulation   
 . Finally, employing losses and gains 

vectors VaR is estimated; in other words, the VaR estimate is obtained through the c% percentile of losses and 

gains vector.    

e) Copula VaR 

In recent years, research and implementations of VaR calculation using copula has increased, determining the 

dependence structure of portfolio and risky assets that comprise it, without starting from assumptions about their 

distributions and estimating heavy tails; more realistic results and avoiding overestimation or underestimation of VaR 

portfolio are obtained in this manner. Following Romano (2002), Rank (2007) and Fantazzini (2008), this research 

makes use of Monte Carlo Simulation VaR with adaptation to copula theory, in other words, Copula VaR.      

To implement Copula VaR, initially must be determined the most suitable joint distribution function, i.e., the one that 

best describes the data. This is accomplished by selecting the specific marginal distribution functions for returns of 

individual risk and a copula function to develop  a single marginal join distribution function.     

Let    and    assets log-returns at time  , and   (   ) the assignment weight, therefore portfolio return is given by, 

       (   )              (  )  

The joint conditional distribution function estimated at time    , is given as, 

  (   |    )    (  ( |    )   ( |    )|    )          (  ) 

thus, the density function is given as, 

  (   |    )    (  ( |    )   ( |    )|    )           (  ) 

Detailed steps of procedure for estimating the p-th confidence level of Copula VaR for a holding period of one day are: 

1.   Let   a portfolio with two assets, which contains a position for each asset, whose value in time    , is: 

                               (  ) 

where        and        are the market prices of the two assets at time    .  

2.  Simulate           Monte Carlo scenarios for asset log-returns {         }, on time horizon [     ], using  joint 

conditional distribution function.  

a) First, it should simulate   random variables (         )
 
 of copula   ( ). 

i. If  using a normal copula 2-dimensional
5
 is used the following algorithm: 

 Through Cholesky decomposition  , find the correlation matrix      ,  , i.e.,  

*
  ̂

 

 ̂
 
 
+ 

where  ̂
 
 is the conditional correlation estimated by normal copula. 

 Simulate two independent random variables distributed standard normal,    (         )
 
. 

 Define the vector,       . 

                                                           
5
 It should be noted, the copula to estimate is a normal copula 2-dimensional; equation (3) denotes the general case of a 

normal copula n-dimensional. 
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 Determine (         )
 
 ( (    )  (    ))

 

, where  ( ) is the standard normal cdf. (         )
 
 vector is a random 

variable   of the 2-dimensional normal copula,        (      ̂ |    ). 

ii. If  using a t-student copula 2-dimensional
6
 the following algorithm is applied: 

 Through Cholesky decomposition  , find the correlation matrix      ,  , i.e.,  

*
  ̂

 

 ̂
 
 
+ 

          where  ̂
 
 is the conditional correlation estimated by t-student copula. 

 Simulate two independent random variables distributed as standard normal,    (         )
 
. 

 Simulate a random variable   , of  
 ̂ 

  distribution, independent of   , where  ̂  is the degrees of freedom parameter 

estimated by t-student copula.   

 Define the vector,       . 

 Construct the vector,
 
   

√ ̂ 

√  
  . 

 Determine(         )
 
 (  ̂ (    )   ̂ (    ))

 

, where   ̂ ( ) is the t-student cdf, with degrees of freedom equal to  ̂ . 

(         )
 
 vector is a random variable   of the 2-dimensional t-student copula,           (     ̂    ̂ |    ). 

 

b) The next step is to obtain the series on log-returns standardized assets by using the inverse function of the estimated 

marginal, which can be normal or t-student.   

   (         )
 
 ( ̂ 

  
(    )  ̂ 

  
(    ))          (  ) 

c) Finally, repeat this procedure to          . 

3. By using these 100,000 cases, the portfolio will be reevaluated at time  , i.e., 

    
            (    )            (    )                                  (  )  

4. The portfolio losses in each scenario  , are calculated by, 

          
                                         (  )  

5. Then, VaR calculation at different confidence levels is easy. It takes into account the losses and gains vector 

without order, so as in the previous cases of VaR simulation, i.e., Historical Simulation VaR and Monte Carlo 

Simulation VaR, This vector is sorted in ascending order, resulting in the losses and gains vector whereby 

VaR calculation is done, via the c% percentile.     

4.   Empirical Evidence  

We estimated the dependence between markets in the Western Hemisphere as well as potential losses via Value at Risk. 

This research covers the period 1992-2009, taking into account daily data time series for a total of 3,655 observations. 

The sample includes the major indexes of the nine American capital markets: S&P TX from Canada, S&P 500 from US; 

IPC from Mexico; MERVAL from Argentina; BOVESPA from Brazil; IPSA from Chile; IGBS from Colombia; IGBVL 

from Peru; and IBC from Venezuela. In order to have a similar sample size given some dissimilar calendar days, time 

series data were previously homogenized. Figure 1 gives an account of the behavior from American capital markets. 

 

 

 

                                                           
6
 It should be noted, the copula to estimate is a 2-dimensional t-student copula; equation (6) denotes the general case of a 

n-dimensional t-student copula. 
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Figure 1: Americas’ Stock Market Indexes 

 

Considering the importance of international portfolio investments and international research standards, the indexes and 

their returns are homogenized into a single currency, in this case the U.S. dollar. Figure 2 shows the returns of the 

American capital market via their respective stock market indices. 

Returns summarized in Figure 2 show that the volatility of stock returns in the Western Hemisphere is unquestionable 

characterized by heteroscedasticity; therefore analyses based in the normality assumption is wrong, leading to spurious 

estimates.  

To determine the absence of linearity, various tests are presented, especially making use of various descriptive statistics: 

a histogram generated from each stock index returns and on each of these histograms is superimposed a normal curve. 

Also for each stock index returns are shown a Q-Q plot and various descriptive statistics, among which stands the 

Jarque-Bera normality test.  In addition to the normal distribution curve superimposed on the histogram a t-student 

distribution curve is also shown, which is the most similar respect to the stock index returns distributions. Figure 3 

details this results.  

Regarding the linearity of returns it can be clearly seen that this assumption is not met. The behavior of the nine indexes 

returns is dissimilar to the normal distribution. Also the Q-Q plots confirm non-linearity, which is visible through S-

shape behavior of the returns, which reveal the presence of heavy tails; this S-shape behavior differs from the straight 

line (normal distribution). Similarly the descriptive statistics reveal that the return series from the Western Hemisphere 

markets are far from a normal behavior: there are high levels of skewness and kurtosis in all stock index returns from the 

Americas, and with respect to statistical normality, the Jarque-Bera test shows that in all cases does not comply with the 

linearity assumption.          

Non-linearity of stock index returns from the share markets from the Americas suggests that copula methodology is 

appropriate to optimize analyses of situations dissimilar to the normal distribution to obtain robust estimates. In 

particular, for estimating the degree of dependence this work uses elliptical copulas, i.e., normal copula and t-student 

copula; for estimating potential losses also uses these elliptical copulas coupled with the use of various alternative 

methodologies for estimating VaR. 
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Figure 2:  Stock Market Index Returns from the Americas 
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Figure 3: Descriptive Statistics of the Stock Market Index Returns from the Americas 
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Analysis and Estimation of Dependence via Copulas  

The main measure of copula dependence is estimated by its own estimate parameter. Parameter estimation of normal 

copula are made under the assumption of marginal normal, where the parameters of the marginal normal are those of a 

normal with mean µ, and standard deviation  , being different means µ’s, and standard deviation  ’s, depending on each 

of different capital markets analyzed. In the case of t-student copula parameters, these are estimated under the 

assumption of marginal t-student, where the parameters of these marginal t-student i.e., mean µ, standard deviation  , 

and degrees of freedom ν; are estimated by maximum likelihood, being different means µ’s, standard deviations  ’s, and 

degrees of freedom ν’s, depending on each of the indices from American capital markets.      

In addition to estimating the degree of dependence (association) of stock index returns via the estimation of their 

respective copulas,   this paper also estimates dependence via copula using Kendall’s tau and Sperman’s rho parameters, 

dependence measures in terms of concordance. Comparing the three estimates reaffirms the importance and magnitude 

of the relationship between stock markets. Table 1 summarizes the results obtained.   

The evidence shows that Kendall´s coefficient underestimates in all cases the degree of association among the stock 

markets from the Americas. The copula parameter and the Spearman coefficient yield very similar results, observing 

both the estimates for the Gaussian copula and the t-student copula. Taking a reference point the t-student copula 

parameter it is worth noting that markets with the highest dependence correspond to S&P 500 and S&P TSX (0.6426); 

and S&P 500 and IPC (0.5202) and S&P TSX and IPC (0.4522). This fact confirms the presence of financial integration 

trends between the members of the NAFTA. However, integration between these countries is still in process. Although 

dependence estimates were the highest in the Americas, mild market segmentation is present, considering that for that 

the degree of association between the Mexican market and the US market is above 0.50, but dependence between the 

financial markets from Canada and Mexico is below 0.50.   Indeed, considering the rank correlation coefficients that help 

capturing the nonlinearity of returns, the Spearman correlation coefficient also shows dependence degrees above 0.5; 

however, the Kendall correlation coefficient is below 0.5. 

Table 1: Dependence Measures Via Copulas the Americas’ Capital Markets 

 

The remaining capital markets from the Americas show dependence with low levels of association: all below 0.5, most 

of them between 0.3 and 0.4. Remarkably, within this range  of dependence the capital markets from Brazil and 
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Argentina, show relatively high dependence levels with the US markets, Additionally, the markets from Argentina, 

Brazil, and Mexico also show fair levels of dependence among themselves. The capital market from Venezuela shows 

the weakest dependence in relation to all other markets under study;  its interaction with 7 of the 8 markets of the sample 

presents dependence ratios below 0.1; only in relation to the Mexican stock market, dependence is slightly above 0.1, 

and this only happens with estimations with copula parameters and the Spearman coefficients. 

VaR Estimation and VaR Copula Estimation  

Due to restrictions in the  multivariate copula methodology value at Risk is estimated in this section for bilateral 

portfolios composed by  indices from the  capital markets under scrutiny. The methodologies applied are: Delta-Normal 

VaR, VaR-GARCH, Historical Simulation VaR, Monte Carlo simulation VaR and Copula VaR, Gaussian and t-student. 

Estimates are for a one day horizon and probability occurrence (significance level) of 99%, 97.5%, 95% and 90%; the 

investment amounts to US$ 100 000. Finally, diversification is made following a naïve strategy, i.e. 50 per cent of 

available resources to each market, to avoid potential concentration in one market in the allocation of resources.
7
 

Table 2 shows the results of various Value at Risk methodologies proposals for each of the portfolios composed between 

the American capital markets. Potential losses are reported in percentage terms for better identification. The evidence 

confirms the effectiveness of non traditional methods over the conventional VaR alternatives. The former ones including 

copula based estimates capture appropriately the non linear behavior of the financial series, yielding more rigorous and 

realistic results vis a vis those from the other methodologies tested here. 

Estimates of VaR Delta-Normal, VaR GARCH and Historical Simulation VaR, tend to underestimate potential losses. 

Estimates via Monte Carlo methods show the higher loss threshold, underlying that estimations carried out applying the 

t-student copula presents the greatest losses.  As expected, exemplifying this situation, the differential between losses 

estimated by the Delta Normal approach and the Copula Monte Carlo Simulation increase the stricter is the confidence 

level. In the case of a US and Canadian portfolio potential losses at 90% confidence level potential losses are 1.54% and 

2.58% for the Delta Normal and Copula Monte Carlo Simulation, respectively; at a 99.0% confidence levels are  2.81% 

and 10.90% for the same alternative estimates.   In the case of a S&P 500 and IPC portfolio at a 90.0% confidence level 

losses are estimated at 1.98% and 3.45% for the Delta Normal and Copula Monte Carlo Simulation methodologies, 

respectively; for the stricter 99.0% confidence level those estimates are 3.91% and 14.032%.  Finally for Canadian-

Mexican portfolio losses at a 90% confidence level losses are estimated at 1.97% and 2.67% according to de Delta-

Normal a Copula t-student Monte Carlos Simulation, respectively; at the stricter 99% confidence level losses amount to 

3.60% and 11.01%, applying the same methodologies, respectively. Thus, the US-Canadian Portfolio is less risky in the 

North American Countries.  

A higher degree of dependence should lead to smaller losses. However, regarding investments between Latin American 

stock market pairs, their measures of association do not necessarily reflect in the estimation of potential losses. It is 

possible to find fairly relatively important dependence levels such as the case of the capital markets from Argentina and 

Brazil which do not reflect lower potential losses. This could be attributed to the characteristics and dynamics of co-

movements between these markets. In other words, in this situation although moderate dependence levels are present, 

possibly there are of more negative co-movements than positive co-movements, asymmetrical effects reflected in 

potential losses. 

                                                           
7
 Naïve diversification is not optimal, but is used in this research because the identical investment allocations in all 

bilateral cases, facilitates comparison between the obtained aggregate results. 
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Table 2: Value at Risk Measures of Capital Markets from the Americas 

 

VaR: Value at Risk; D-N: Delta-Normal; GARCH: GARCH-Copula; S-H: Historical Simulation; S-MC: Monte Carlo 

Simulation Copula (C-N: Gaussian, C-t-student) 

Therefore, although it is feasible to suggest that the degree of dependence influences the estimation of potential losses, it 

is possible to find situations such as in the case from Argentina and Brazil. Thus, it cannot be affirmed beyond question 

that with greater dependence degree between markets, the lower the potential losses, or vice versa. 

In relation to lower and higher estimated potential losses, it is possible to conclude that the portfolio consisting of the 

developed markets from North America, Canada and United States, is which presents minor potential losses, confirming 

their high dependence ratios previously estimated. Dependence between these markets results in a smaller risk threshold. 

Finally it is worth noting that all bilateral portfolios which include the market from Brazil. Chile, Colombia and Peru 

produce large potential losses. The Mexican market is seemingly the less risky in terms of bilateral investments with 

other emerging markets from the Americas. 

5.  Conclusions  

The first objective of this paper was to verify the degree dependence between a representative set from capital markets 

from the Americas. The evidence indicates that there is a limited degree of dependence degree between the capital 

markets from Latin America. In relation to the capital markets from North America a fairly high degree of dependence 

was found. Based on the empirical evidence it can be concluded that the dependence degree between the Latin American 

capital markets is rather low, particularly for the case of Venezuelan market, which shows very low levels of 

dependence. The markets of North America show medium to high degrees of dependence which can be attributed to their 
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economic integration schemes, although it can be concluded the presence of mild segmentation. It is therefore possible to 

conclude that financial integration seen through dependence degrees is low and dissimilar for the case of the Latin 

American capital markets and relatively high between the markets of North America. 

Concerning the second objective of this paper, the estimation of potential losses of bilateral portfolios, estimates were 

carried out applying various techniques of Value at Risk. Estimates obtained by the copula VaR methodology proved to 

be more restrictive, estimating greater losses than other methodologies. Also, it was found that the degrees of association 

among the capital markets of the Western Hemisphere American capital markets are reflected in the estimation of 

potential losses. Higher degrees of dependence lead to lower potential losses and vice versa. Exceptions are present. 

Relatively high levels of dependence, such as in the case of the markets from Argentina and Brazil did not reflect in 

lower potential losses. This could largely be attributed to the dynamics and structure of co-movements between these 

markets. 

In summary, it be also concluded that because the dependence degree is rather low for the Latin American capital 

markets, this signals the potential for international diversification, constructing of portfolios combining assets from these 

markets. Finally, results from this research also suggest that copula theory leads to more realistic estimates, than 

traditional methodologies, in the estimation of dependence degrees, as well as in the estimation of Value at Risk. 
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