

Volume 6, Issue 2

Published online: December 28, 2015

Journal of Progressive Research in Mathematics www.scitecresearch.com/journals

On $I\alpha$ - **Open Set in Ideal Topological Spaces**

A. E. Radwan¹, A. A. Abd- Elgawad², H. Z. Hassan³

¹ Department of mathematics, Faculty of Science, Ain Shams University, Egypt. Runing addres: Department of mathematics, Faculty of Science and Arts(UNAIZAH) Alqassim University, Saudi Arabia.

² Department of mathematics, Faculty of Science, Suze Canal University, Egypt.

3Department of mathematics, Faculty of Science, Suze Canal University, Egypt.

Abstract

The aim of this paper is to study separation axioms and compactness of $I\alpha$ - open set in ideal topological spaces, which was introduced by M.E. Abd El-Monsef, etc [1].

Keywords: $I\alpha$ - open set; $I\alpha$ - T_0 - space; $I\alpha$ - T_1 - space; $I\alpha$ - T_2 - space; $I\alpha$ - R- space; $I\alpha$ - N- space and $I\alpha$ - compact space.

1. Introduction

The subject of ideals in topological spaces has been studied by Kuratowski [3] and Vaidyanathaswamy [7]. An ideal I on a set X is a nonempty collection of subsets of X which satisfies: (1) $A \in I$ and $B \subset A$ implies $B \in I$ and (2) $A \in I$, $B \in A$ implies $A \cup B \in I$.

Given a topological space (X, τ) with ideal I on X and if P(X) is the set of all subsets of X. A set operator $()^*: P(X) \to P(X)$, called a local function [3] of A with respect to τ and I, is defined as follows: for $A \subset X$, $A^*(I, \tau) = \{x \in X : A \cap U \notin I \text{ for every } U \in \tau(x)\}$, where $\tau(x) = \{U \in \tau : x \in U\}$. Kuratowski closure operator $cl^*()$ for the topology $\tau^*(I, \tau)$, called the \star -topology and finer than τ , is defined by $cl^*(A) = A \cup A^*(I, \tau)$ [6]. When there is no chance for confusion we will simply write A^* for $A^*(I, \tau)$ and τ^* for $\tau^*(I, \tau)$. If I is an ideal on X then (X, τ, I) is called an ideal topological space.

In an ideal topological space (X, τ, I) , if $A \subset X$ then $int^*(A)$ will denote the interior of A in (X, τ^*) . The closed subsets of X in (X, τ^*) are called *- closed sets. A subset A of an ideal topological space (X, τ, I) is *- closed if and only if $A^* \subset A$ [2].

For any ideal topological space (X, τ, I) , the collection $\{V - J: V \in \tau \text{ and } J \in I\}$ is a basis for $\tau^*[2]$. The elements of τ^* are called *- open sets. A subset A of an ideal topological space (X, τ, I) is said to be *- dense set if $cl^*(A) = X$. It is clear that, in an ideal topological space (X, τ, I) , if $A \subset B \subset X$ then $A^* \subset B^*$ and so $cl^*(A) \subset cl^*(B)$.

Recall that, if (X, τ, I) is an ideal topological space and A is a subset of X then (A, τ_A, I_A) , where τ_A is the relative topology on A and $I_A = \{A \cap J : J \in I\}$, is an ideal topological subspace.

Given a topological space (X, τ) . A subset A of a space X is said to be α - open set if $A \subset int(cl(int(A)))$. The family of all α - open subsets of a space (X, τ) forms a topology on X, called the α - topology on X and denoted by τ_{α} . It is finer than τ . If every nowhere dense set in a space (X, τ) is closed then $\tau_{\alpha} = \tau$ [5].

The concept of a set operator $()^{\alpha*}: P(X) \to P(X)$ was introduced by A. A. Nasef [4] in 1992 which is called an α - local function of I with respect to τ . It was defined as follows: for $A \subset X$, $A^{\alpha*}(I, \tau) = \{x \in X : A \cap U \notin I \text{ for every } U \in \tau_{\alpha}(x)\}$

where $\tau_{\alpha}(x) = \{U \in \tau_{\alpha} : x \in U\}$. When there is no chance for confusion we will simply write $A^{\alpha*}$ for $A^{\alpha*}(I,\tau)$. An α^* - closure operator, denoted by $cl^{\alpha*}(\)$, for a topology $\tau^{\alpha*}(I,\tau)$ which is called the *- α -topology, finer than τ . It is defined as follows: $cl^{\alpha*}(A)(I,\tau) = A \cup A^{\alpha*}(I,\tau)$. When there is no ambiguity we will simply write $cl^{\alpha*}(A)$ for $cl^{\alpha*}(A)(I,\tau)$. A basis $\mathfrak{B}(I,\tau)$ for $\tau^{\alpha*}$ is described as follows: $\mathfrak{B}(I,\tau) = \{V - J : V \in \tau_{\alpha} \text{ and } J \in I\}$. We will denote by $int^{\alpha*}(A)$ and $cl^{\alpha*}(A)$ the interior and closure of $A \subset (X,\tau,I)$ with respect to $\tau^{\alpha*}$. The elements of $\tau^{\alpha*}$ are called $\tau^{\alpha*}$ - open sets. Closed subsets of X in $(X,\tau^{\alpha*})$ are called $\tau^{\alpha*}$ - closed sets. A subset A of an ideal topological space (X,τ,I) if $A \subset B \subset X$ then $A^{\alpha*} \subset B^{\alpha*}$ and $cl^{\alpha*}(A) \subset cl^{\alpha*}(B)$. So $A^{\alpha*} \subset A^*$ and $cl^{\alpha*}(A) \subset cl^{\alpha*}(A)$.

Given a topological space (X, τ) . A subset A of X is said to be $I\alpha$ - open set if $A \subset int(cl^{\alpha*}(int(A)))$. The family of all $I\alpha$ - open subsets of a space (X, τ) is denoted by $I\alpha O(X)$ [1]. Consider the ideal topological spaces (X, τ, I) and (Y, σ, J) and define a function $f: (X, \tau, I) \to (Y, \sigma, J)$ such that f is $I\alpha$ -irresolute homeomorphism, i.e..., then if the ideal topological space (X, τ, I) has any property P and the ideal topological space (Y, σ, J) has the same property P then P is called $I\alpha$ - topological property. A property P of an ideal topological space X is said to be $I\alpha$ - hereditary property if and only if every $I\alpha$ - subspace of X also possesses property P.

In the following subjects we need to remember some concepts introduced by Radwan in 2015 [6]. An $I\alpha$ boundary set is defined as: Let (X, τ, I) be an ideal topological space and $A \subseteq X$. $x \in X$ is said to be an $I\alpha$ boundary point of **A** if for every $I\alpha$ - open neighborhood set for x satisfies that the intersection with A and A^{c} is nonempty set. The set of all $I\alpha$ - boundary points of **A** is called $I\alpha$ -boundary set of **A** and simply is denoted by $I\alpha$ - b(A). Let (X, τ, I) be an ideal topological space and $A \subseteq X$. Then $I\alpha$ - closure set of **A** is defined by the union of **A** and $I\alpha$ -derived set of **A** and simply is denoted by $I\alpha$ - cl(A). Let $f: (X, \tau, I) \to (Y, \sigma, J)$ be a function. f is said to be $I\alpha$ - irresolute function if the inverse image of every $J\alpha$ - open set in Y is $I\alpha$ - open set in X. $I\alpha$ - topological property is a new property which defined as Consider the ideal topological spaces (X, τ, I) and (Y, σ, J) such that $f: (X, \tau, I) \to (Y, \sigma, J)$ is $I\alpha$ - irresolute function. Then if X satisfies any property P so did Y then this property is called $I\alpha$ - topological property.

2. SEPARATION AXIMOS IN Ia- OPEN SETS

In this section, we will study some properties of different types of separation axioms on the level of ideal topological spaces using $I\alpha$ - open sets.

Definition 2.1 Let (X, τ, I) be an ideal topological space then it is called $I\alpha$ - T_{\circ} - space if for any two different elements in X there exist an $I\alpha$ - open set in X containing one element of them but does not contain the other element.

Proposition 2.2 (X, τ, I) is an $I\alpha$ - T_{\circ} -space if and only if $I\alpha$ - $cl(x) \neq I\alpha$ -cl(y) for any $x, y \in X$ such that $x \neq y$.

Remark 2.3 The $I\alpha$ - T_{o} - property is not hereditary property.

Example 2.4 Consider the ideal topological space (X, τ, I) such that $X = \{x, y, z\}, \tau = \mathcal{P}(X), I = \{\emptyset, \{y\}\}$ then $I\alpha O(X) = \mathcal{P}(X)$. It is clear that X is $I\alpha \cdot T_{\circ}$ - space but if we take $w = \{x\} \subseteq X$, then (w, τ_w, I_w) is not $I\alpha \cdot T_{\circ}$ - space for $I\alpha O(w) = \{w, \emptyset\}$.

Corollary 2.5 The $l\alpha$ - T_{o} - property is $l\alpha$ - hereditary property.

Remark 2.6 The continuous image of $I\alpha$ - T_{o} - space is not necessary to be $J\alpha$ - T_{o} as the following example shows.

Example 2.7 Consider the ideal topological spaces (X, τ, I) and (X, τ, J) such that $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}, \{a, b\}\}, I = \mathcal{P}(X)$ and $J = \{\emptyset\}$. Then $I\alpha O(X) = \tau$ and $J\alpha O(X) = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}\}$.

Define a function $f: (X, \tau, I) \to (Y, \sigma, J)$ such that $f(a) = f(b) = f(c) = f(d) = \{a\}$. Then $f^{-1}(X) = X \in IaO(X), f^{-1}(\emptyset) = \emptyset \in IaO(X)$ and

 $f^{-1}{a} = f^{-1}{a,b} = f^{-1}{a,c} = f^{-1}{a,c,d} = f^{-1}{a,b,d} = X \in I\alpha O(X)$. Thus f is $I\alpha$ continuous function and it is clear that (X,τ,J) is $I\alpha \cdot T_{\circ}$ - space but (X,τ,I) is not $I\alpha \cdot T_{\circ}$ - space for $c,d \in X$ such that $c \neq d$ the only $I\alpha$ - open set contains c is X but it is also contain d.

Remark 2.8 The $I\alpha$ - T_{o} -property is not necessary to be topological property, as the following example shows.

Example 2.9 Consider the ideal topological spaces (X, τ, I) and (X, τ, J) such that $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}, \{a, b\}\}, I = \mathcal{P}(X)$ and $J = \{\emptyset\}$. Then $I\alpha O(X) = \tau$ and $J\alpha O(X) = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}\}$.

Define a function $f: (X, \tau, I) \to (X, \tau, J)$ such that f(x) = x, $\forall x \in X$. Then (X, τ, J) is $I\alpha \cdot T_{o}$ -space but (X, τ, I) is not because, if we take $c, d \in X$ such that $c \neq d$ the only $I\alpha$ - open set contains c is X but it is also contain d.

Corollary 2.10 The $I\alpha$ - T_{o} - property is $I\alpha$ - topological property.

Remark 2.11 Every T_{o} - space is $l\alpha$ - T_{o} - space but the converse is not necessary to be true, as the following example shows.

Example 2.12 Take the ideal topological space (X, τ, I) such that $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}, \{a, b\}\}$ and $I = \{\emptyset, \{b\}\}$. Then $I\alpha O(X) = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c$

From τ we get that the space X is not T_{o} - space but from $I\alpha O(X)$ we get that the space is $I\alpha$ - T_{o} - space.

Definition 2.13 Let (X, τ, I) be an ideal topological space. Then it is called $I\alpha - T_1$ - space if for any two different elements in X there exist two $I\alpha$ - open sets in X such that each $I\alpha$ - open set of them containing only one element of those elements.

Proposition 2.14 (X, τ, I) is an $I\alpha$ - T_1 - space if and only if for any element x in X we have that $\{x\}$ are $I\alpha$ closed sets in X.

Corollary 2.15 An ideal topological space (X, τ, I) is an $I\alpha$ - T_1 - space if and only if the following statements are equivalent:

i. $I\alpha - cl\{x\} = \{x\}$, $\forall x \in X$. ii. $\{x\} = \cap \{F: F \in I\alpha C(X) \land x \in F\}$, $\forall x \in X$. iii. $I\alpha - b\{x\} \subseteq \{x\}$, $\forall x \in X$. iv. $I\alpha - d\{x\} \subseteq \{x\}$, $\forall x \in X$. v. $I\alpha - d\{x\} = \emptyset$, $\forall x \in X$.

Corollary 2.16 $I\alpha$ - T_1 - property is $I\alpha$ -hereditary property.

Remark 2.17 $l\alpha$ - T_1 - property is not topological property, as the following example shows.

Corollary 2.18 $l\alpha$ - T_1 - property is $l\alpha$ - topological property.

Remark 2.19 Every T_1 - space is $l\alpha$ - T_1 - space but the converse is not necessary to be true. As the following example shows:

Example 2.20 Consider the ideal topological space (\mathcal{N}, τ, I) where $\tau = \{u_n \subseteq \mathcal{N}: u_n = \{n, n+1, ...\}, n \in \mathcal{N}\} \cup \{\emptyset\}$ and $I = \{\emptyset\}$, then the family of all $I\alpha$ - open subsets of \mathcal{N} is $\{A \cup u_n: A \subseteq \mathcal{N} \text{ and } u_n \in \tau - \{\emptyset\}\} \cup \{\emptyset\}$. It is clear that (\mathcal{N}, τ, I) is $I\alpha - T_1$ - space which is not T_1 - space since, if we fix x = 1 then for any element $y \in \mathcal{N}$ there is no open set v containing 1 but not contains y.

Remark 2.21 Every $I\alpha$ - T_1 - space is $I\alpha$ - T_o - space but the converse is not necessary to be true, as the following example shows.

Example 2.22 The (X, τ, I) in Example 2.12 is $I\alpha \cdot T_0$ - space but it is not $I\alpha \cdot T_1$ - space for $a, b \in X$ such that $a \neq b$ there is no two $I\alpha$ - open sets in X such that each $I\alpha$ - open set of them containing only one element of those elements.

Remark 2.23 $I\alpha$ - T_1 - property is not hereditary property.

Definition 2.24 Let (X, τ, I) be an ideal topological space. It is called $I\alpha$ - T_2 - space if for any two different elements in X there exist two disjoint $I\alpha$ - open sets in X such that each $I\alpha$ - open set of them containing only one element of those elements.

Remark 2.25 $I\alpha$ - T_2 - property is not hereditary property.

Corollary 2.26 $l\alpha$ - T_2 - property is $l\alpha$ - hereditary property.

Remark 2.27 $l\alpha$ - T_2 - property is not topological property.

Corollary 2.28 $I\alpha$ - T_2 - property is $I\alpha$ - topological property.

Remark 2.29 Every T_2 - space is $I\alpha$ - T_2 - space but the converse is not necessary to be true.

Remark 2.30 Every $l\alpha$ - T_2 - space is $l\alpha$ - T_1 - space is $l\alpha$ - T_0 - space but the converse is not necessary to be true.

Example 2.31 The (X, τ, I) in Example 2.12 is $I\alpha - T_{o}$ - space but it is not $I\alpha - T_{2}$ - space for $a, b \in X$ such that $a \neq b$ there is no two disjoint $I\alpha$ - open sets in X such that each $I\alpha$ - open set of them containing only one

element of those elements. the ideal topological space in Example 2.21 is $I\alpha - T_1$ - space but not $I\alpha - T_2$ - space for any two $I\alpha$ - open sets in \mathcal{N} , the intersection of them is not empty set.

Definition 2.32 Let (X, τ, I) be an ideal topological space. It is called $I\alpha$ - regular space if for every element in X and $I\alpha$ - closed set in X does not contain the previous element then there exist two disjoint $I\alpha$ - open sets in X such that one of them containing the element and the other set containing the $I\alpha$ - closed set. It is denoted by $I\alpha$ -R-space.

Definition 2.33 Let (X, τ, I) be an ideal topological space. It is called almost $I\alpha$ - regular space if for every element in X and every closed set in X does not contain the previous element then there exist two disjoint $I\alpha$ - open sets in X such that one of them containing the element and the other set containing the closed set. It is denoted by almost- $I\alpha$ -R-space.

Proposition 2.34 (X, τ, I) is an $I\alpha$ - R- space if and only if for any element x in X and every $I\alpha$ - open set U in X such that $x \in U$ then there exists another $I\alpha$ - open set V in X satisfying that $x \in V \subseteq I\alpha$ - $cl(V) \subseteq U$.

Proposition 2.35 (X, τ, I) is an almost $I\alpha$ - R- space if and only if for any element x in X and every open set U in X such that $x \in U$ then there exists another $I\alpha$ - open set V in X satisfying that $x \in V \subseteq I\alpha$ - $cl(V) \subseteq U$.

Remark 2.36 Both $I\alpha$ - R- property and almost $I\alpha$ - R- property are not hereditary properties.

Corollary 2.37 $I\alpha$ - R- property is $I\alpha$ - hereditary property.

Remark 2.38 $I\alpha$ - R- property and almost $I\alpha$ - R- property are not topological property.

Corollary 2.39 $I\alpha$ - R- property is $I\alpha$ - topological property.

Remark 2.40 Every **R**- space is almost $I\alpha$ - **R**- space $I\alpha$ - **R**- space but the converse is not necessary to be true.

Definition 2.41 Let (X, τ, I) be an ideal topological space then it is called $I\alpha - T_3$ -space if X is $I\alpha - T_1$ -space and $I\alpha - R$ -space.

Definition 2.42 Let (X, τ, I) be an ideal topological space then it is called almost $I\alpha$ - T_3 -space if X is $I\alpha$ - T_1 -space and almost $I\alpha$ - R-space.

Proposition 2.43 If the ideal topological space (X, τ, I) is $I\alpha - T_3$ -space then (X, τ, I) is $I\alpha - T_2$ -space.

Corollary 2.44 Both almost $I\alpha_{-}T_{3}$ - property and $I\alpha_{-}T_{3}$ - property are not hereditary property.

Proof $I\alpha$ - R- property, almost $I\alpha$ - R- property and $I\alpha$ - T_1 - property are not hereditary properties.

Corollary 2.54 $l\alpha$ - T_3 - property is $l\alpha$ -hereditary property.

Proof Both $I\alpha$ - R- property and $I\alpha$ - T_1 - property are $I\alpha$ - hereditary properties.

Corollary 2.46 Both almost $l\alpha$ - T_3 - property and $l\alpha$ - T_3 - property are not topological properties.

Proof $I\alpha$ - R- property, almost $I\alpha$ - R- property and $I\alpha$ - T_1 - property are not topological properties.

Corollary 2.47 $I\alpha$ - T_3 - property is $I\alpha$ - topological property.

Proof Both $I\alpha$ - R- property and $I\alpha$ - T_1 - property are $I\alpha$ - topological properties.

Remark 2.48 Every T_3 - space is almost $I\alpha$ - T_3 - space is $I\alpha$ - T_3 - space but the converse is not necessary to be true.

Definition 2.49 Let (X, τ, I) be an ideal topological space then it is called $I\alpha$ - normal space if for every two disjoint $I\alpha$ - closed sets in X there exist two disjoint $I\alpha$ - open sets in X such that each $I\alpha$ - open set contain only one of the two disjoint $I\alpha$ - closed sets in X. It is denoted by $I\alpha$ -N-space.

Definition 2.50 Let (X, τ, I) be an ideal topological space then it is called almost $I\alpha$ - normal space if for every two disjoint closed sets in X there exist two disjoint $I\alpha$ - open sets in X such that each $I\alpha$ - open set contain only one of the two disjoint closed sets in X. It is denoted by almost $I\alpha$ -N-space.

Proposition 2.51 (X, τ, I) is an $I\alpha$ - N- space if and only if for any $I\alpha$ - closed set F in X and every $I\alpha$ - open set U in X containing F then there exists another $I\alpha$ - open set V in X satisfying that $F \subseteq V \subseteq I\alpha$ - $cl(V) \subseteq U$.

Proposition 2.52 (X, τ, I) is almost $I\alpha$ - N- space if and only if for any closed set F in X and every open set U in X containing F then there exists another $I\alpha$ - open set V in X satisfying that $F \subseteq V \subseteq I\alpha$ - $cl(V) \subseteq U$.

Remark 2.53 Both $I\alpha$ - N- property and almost $I\alpha$ - N- property are not hereditary properties.

 (X,τ,I) Example 2.54 Consider the ideal topological space such that $X = \{1, 2, 3, 4\}, \tau = \{X, \emptyset, \{2\}, \{1, 2\}, \{2, 3\}, \{1, 2, 3\}\}$ and $I = \mathcal{P}(X)$. Then $I\alpha O(X) = \tau$. It is clear that (X, τ, I) is $I\alpha$ - N- space and almost $I\alpha$ - N-space but if we take $A = \{1, 2, 3\} \subseteq X$ then (A, τ_A, I_A) is neither space nor almost $I\alpha - N$ - space for $\tau_A = I\alpha O(A) = \{A, \emptyset, \{2\}, \{1,2\}, \{2,3\}\},\$ Ια-Ν- $\{1\}, \{3\} \in F_A = I\alpha C(A) \text{ such that } \{1\} \cap \{3\} = \emptyset \text{ and } \{1\} \subseteq \{1,2\} \in I\alpha O(A), \{3\} \subseteq \{2,3\} \in I\alpha O(A)$ but $\{1,2\} \cap \{2,3\} \neq \emptyset$.

Corollary 2.55 $I\alpha$ - *N*- property is $I\alpha$ - hereditary property.

Remark 2.56 Both $I\alpha$ - N- property and almost $I\alpha$ - N- property are not topological property.

Corollary 2.57 $I\alpha$ - N- property is $I\alpha$ - topological property.

Remark 2.58 Every *N*- space is almost $I\alpha$ - *N*- space $I\alpha$ - *N*- space but the converse is not necessary to be true.

Definition 2.59 Let (X, τ, I) be an ideal topological space. It is called $I\alpha$ - T_4 -space if X is $I\alpha$ - T_1 -space and $I\alpha$ -N-space.

Definition 2.60 Let (X, τ, I) be an ideal topological space. It is called almost $I\alpha$ - T_4 -space if X is $I\alpha$ - T_1 -space and almost $I\alpha$ -N-space.

Proposition 2.61 Every $I\alpha$ - T_4 -space is $I\alpha$ - R-space.

Proposition 2.62 Every $I\alpha$ - T_4 -space is $I\alpha$ - T_3 -space.

Remark 2.63 Both almost $l\alpha$ - T_4 - property and $l\alpha$ - T_4 - property are not hereditary properties.

Proof $I\alpha$ - N- property, almost $I\alpha$ - N- property and $I\alpha$ - T_1 - property are not hereditary properties.

Corollary 2.64 $I\alpha$ - T_4 - property is $I\alpha$ -hereditary property.

Remark 2.65 Both almost $l\alpha$ - T_4 - property and $l\alpha$ - T_4 - property are not topological properties.

Proof $I\alpha$ - N- property, almost $I\alpha$ - N- property and $I\alpha$ - T_1 - property are not topological properties.

Corollary 2.66 $l\alpha$ - T_4 - property is $l\alpha$ - topological property.

Remark 2.67 Every T_4 - space is almost $I\alpha$ - T_4 - space is $I\alpha$ - T_4 - space but the converse is not necessary to be true.

3. *Ια*- COMPACT SPACES

In this section we will study $I\alpha$ - compact spaces using the concept $I\alpha$ - open sets.

Definition 3.1 A subset A of an ideal topological space (X, τ, I) is said to be $I\alpha$ - compact if for every cover $\{u_{\alpha} : \alpha \in \Lambda\}$ by $I\alpha$ - open sets in X for A, there is a finite subfamily Λ_{\circ} of Λ such that $A - \bigcup \{u_{\alpha} : \alpha \in \Lambda_{\circ}\} \in I$. A space (X, τ, I) is $I\alpha$ - compact if X is $I\alpha$ - compact as a set.

Remark 3.2 $I\alpha$ - compact property is not hereditary property.

Example 3.3 Consider the ideal topological (X, τ, I) such space that $X = \mathbb{N} \cup \{0, -1\}, \tau = p(\mathbb{N}) \cup \{H \subseteq \mathbb{N}: H^c \text{ is finite, } 0 \in \mathbb{H} \text{ or } -1 \in \mathbb{H}\}_{and} I = \{\emptyset\}.$ Then $I\alpha O(X) = \tau$. The ideal topological space (X, τ, I) is an $I\alpha$ - compact space and by taking $A = \mathbb{N} \subseteq X$ which $\{\{n\}: n \in \mathbb{N}\}$ not Iαcompact space for: is Iα is open cover for Ν but $N - \cup \{1, 2, \dots, m\} = infinite set \notin I$.

Remark 3.4 $l\alpha$ - compact property is neither topological property nor $l\alpha$ - topological property.

Example 3.5 Consider the ideal topological spaces (X, τ, I) and (Y, σ, J) such that $X = Y = N, \tau = \sigma = D, I = D$ and $J = \emptyset$. Then $I \alpha O(X) = I \alpha O(Y) = D$.

Define a function $f: (X, \tau, I) \to (Y, \sigma, J)$ such that $f(a) = a \quad \forall a \in X$ thus f is continuous, 1-1, onto function and f^{-1} is also continuous. (X, τ, I) is $I\alpha$ - compact space but (Y, σ, J) is not. We can see that f is also $I\alpha$ - irresolute function and f^{-1} is $j\alpha$ - irresolute function. Hence $I\alpha$ - compact property is neither topological nor $I\alpha$ - topological property.

Corollary 3.6 If $A, B \subseteq X$ such that A, B are $I\alpha$ - compact sets over X then $A \cup B$ is also $I\alpha$ - compact set.

Remark 3.7 If $A, B \subseteq X$ such that A, B are $I\alpha$ - compact sets over X then it is not necessary that $A \cap B$ to be $I\alpha$ - compact set. As the following example shows.

Example 3.8 Consider the ideal topological space (X, τ, I) such that $X = \mathbb{N} \cup \{0, -1\}, \tau = p(\mathbb{N}) \cup \{H \subseteq \mathbb{N}: H^c \text{ is finite}, 0 \in \mathbb{H} \text{ or } -1 \in \mathbb{H}\}$ and $I = \{\emptyset\}$. Then $I\alpha O(X) = \tau$. The ideal topological space (X, τ, I) is an $I\alpha$ - compact space and by taking $A = \mathbb{N} \cup \{0\}, B = \mathbb{N} \cup \{-1\}$ so A, B are $I\alpha$ - compact sets over X but $A \cap B = \mathbb{N}$ which is not $I\alpha$ -compact set.

Remark 3.9 There is no relation between being the ideal topological space (X, τ, I) compact space or $I\alpha$ -compact space.

Example 3.10

i. Consider the ideal topological space (X, τ, I) such that $X = N, \tau = D$ and I = p(N). Then $I\alpha O(X) = D$. We know that N is not compact space but the ideal topological space (N, D, I) is $I\alpha$ -compact space.

ii. Consider the ideal topological space (X, τ, I) such that $X = N, \tau = \{N, \emptyset, \{1\}\}$ and $I = \{\emptyset\}$. Then $I\alpha O(X) = \{A \subseteq N: 1 \in A\} \cup \{\emptyset\}$. We know that N is compact space but the ideal topological space (N, τ, I) is not $I\alpha$ - compact space. Now, take $\{\{1, n\}: n \in N\}$ is an $I\alpha$ - open cover for N, then there exists $m \in N$ such that $\cup \{1, m\}$ is finite subfamily of $\{1, n\}$ but $N - \cup \{1, m\} \notin I$, and it is infinite. Hence (N, τ, I) is not $I\alpha$ - compact space but (N, τ) is compact.

References

- [1] M. E. Abd El-Monsef, A. E. Radwan and A. I. Nasir, Some generalized forms of compactness in ideal topological spaces, Archives Des Sciences, Vol.66, no.3, Mar 2013,334-342.
- [2] D. Jankovic, T. R. Hamlett, New topologies from old via ideals, Amer, Math, Monthly, 97(1990), 259-310.
- [3] K. Kuratowski, Topology, Vol 1, New York: Academic Press, (1933).
- [4] A. A. Nasef, Ideals in general topology, Ph.D, Thesis, Tanta University, (1992).
- [5] O.Njastad, On some classes of nearly open sets, Pacific J, Math. 15(1965), 961-970.
- [6] A. E. Radwan, A. A. Abd- Elgawad and H. Z. Hassan, On Iα- connected spaces via ideal, Journal of Advances in Mathematics.(2015),3006-3014
- [7] V.Vaidyanathaswamy, The localization theory in set topology, Pro. Indian Acad. Sci, 20(1945),51-61.