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1. Introduction 

Integral inequalities have been frequently employed in the theory of functional analysis, differential equations and 

applied sciences such as probability and statistics. There are a lot of types integral inequalities such as Hermite - 

Hadamard type inequalities, Opial type inequalities, Hardy type inequalities. Especially an integral inequality which 

is called Qi Inequality by mathematics community, has been studied by many authors in the last two decades. Qi 

Inequality was actually posed by Feng Qi in the preprint [1] and it was formally published in his paper version [2]. 

In recent years, it has been used extensively for solution of integral inequalities and in several of their applications.  

The main aim of this present paper is to provide a survey of "Qi type integral inequalities". We examine a number 

of generalized and extended versions of Qi Inequality.  

In the section 2, we present Qi’s original problem and related problems which are generalizations and special forms 

of his problem.  

In the section 3, we list systematically some articles which give affirmative answers to the problems mentioned in 

the section 2. 

2. Qi’s Open Problem and Related Problems 

In [2], Qi proved the following interesting integral inequality result. He used analytic method and mathematical 

induction to prove integral inequalities. 

Theorem 2.1 ([2], p.1). Suppose that 𝑓 𝑥  is continuous on  𝑎, 𝑏  and differentiable on  𝑎, 𝑏  such that 𝑓 𝑎 = 0. 

a) If 0 ≤ 𝑓′ 𝑥 ≤ 1 for 𝑥 ∈  𝑎, 𝑏  then 

  𝑓 𝑥  3𝑑𝑥
𝑏

𝑎

≤   𝑓 𝑥 𝑑𝑥
𝑏

𝑎

 

2

. #(2.1)  

b) If 𝑓′ 𝑥 ≥ 1, then inequality (2.1) reverses. 

c) The equality in (2.1) is valid only if 𝑓 𝑥 ≡ 0 or 𝑓 𝑥 = 𝑥 − 𝑎. 

As a generalization of inequality (2.1), Qi also obtained the following more general result in [2]. 

Theorem 2.2 ([2], p.2). For 𝑛 ∈ ℕ, assume 𝑓 𝑥  has a continuous derivative of the 𝑛-th order on the interval  𝑎, 𝑏  

such that 𝑓 𝑖  𝑎 ≥ 0 for 0 ≤ 𝑖 ≤ 𝑛 − 1 and 𝑓 𝑛  𝑥 ≥ 𝑛! then  
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  𝑓 𝑥  𝑛+2𝑑𝑥 ≥   𝑓 𝑥 
𝑏

𝑎

𝑑𝑥 

𝑛+1𝑏

𝑎

. #(2.2)  

Qi also proposed an open integral inequality problem at the end of [2] which was actually posed by himself in the 

preprint version [1]. 

Remark 2.3 ([2], p.3). (Problem 1) Under what conditions does the inequality  

  𝑓 𝑥  𝑡𝑑𝑥 ≥   𝑓 𝑥 
𝑏

𝑎

𝑑𝑥 

𝑡−1𝑏

𝑎

#(2.3)  

hold for 𝑡 > 1? 

Since then, this Problem 1 (Remark 2.3) has been stimulating much interest of many mathematicians and 

affirmative answer to it has been established. 

Remark 2.4. In [2], Qi phrased that “the inequality (2.2) is not found in [3,4,5,6] and so maybe it is a new 

inequality”. In fact, it is a new result so has attracted many mathematicians research interest and many extensions, 

generalizations and applications of inequality (2.2) or (2.3) have been investigated in recent years and published 

articles devoted to answering those problems. For more detailed information, please see the references therein. 

We propose same integral inequality (2.3) for the case 𝑡 < 1 as open problem. 

Remark 2.5. (Problem 2) Under what conditions does the inequality 

  𝑓 𝑥  𝑡𝑑𝑥 ≥   𝑓 𝑥 
𝑏

𝑎

𝑑𝑥 

𝑡−1𝑏

𝑎

# 2.4  

 

hold for 𝑡 < 1? 

We propose some integral inequality as open problem. The following are the reverses of Problem 1 (Remark 2.3) 

and Problem 2 (Remark 2.5), respectively. 

Remark 2.6. (Problem 3) Under what conditions does the inequality  

  𝑓 𝑥  𝑡𝑑𝑥 ≤   𝑓 𝑥 
𝑏

𝑎

𝑑𝑥 

𝑡−1𝑏

𝑎

# 2.5  

 

hold for 𝑡 > 1? 

Remark 2.7. (Problem 4) Under what conditions does the inequality  

  𝑓 𝑥  𝑡𝑑𝑥 ≤   𝑓 𝑥 
𝑏

𝑎

𝑑𝑥 

𝑡−1𝑏

𝑎

# 2.6  

hold for 𝑡 < 1? 

The following two open problems are special cases of Problem 1 (Remark 2.3) and Problem 2 (Remark 2.6). 

Remark 2.8. (Problem 5) Under what conditions does the inequality 

  𝑓 𝑥  𝑛+2𝑑𝑥 ≥   𝑓 𝑥 
𝑏

𝑎

𝑑𝑥 

𝑛+1𝑏

𝑎

#(2.7)  

hold for 𝑛 ∈ ℕ? 

Remark 2.9. (Problem 6) Under what conditions does the inequality  

  𝑓 𝑥  𝑛+2𝑑𝑥 ≤   𝑓 𝑥 
𝑏

𝑎

𝑑𝑥 

𝑛+1𝑏

𝑎

#(2.8)  

hold for 𝑛 ∈ ℕ? 

In [7], L. Bougoffa posed the following problem (see Problem 2 in [7]) which is similar to Problem 1 (Remark 2.3), 

which is Qi’s inequality. The following inequality which is called Bougoffa Inequality. 
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Remark 2.10. (Problem 7) Under what conditions does the inequality  

  𝑓 𝑥  𝑡𝑑𝑥 ≤   𝑓 𝑥 
𝑏

𝑎

𝑑𝑥 

1−𝑡𝑏

𝑎

#(2.9)  

hold for 𝑡 < 1? 

The following inequality is the reverse of Bougoffa Inequality. 

Remark 2.11. (Problem 8) Under what conditions does the inequality 

  𝑓 𝑥  𝑡𝑑𝑥 ≥   𝑓 𝑥 
𝑏

𝑎

𝑑𝑥 

1−𝑡𝑏

𝑎

#(2.10)  

hold for 𝑡 < 1? 

The following two open problems are extension of Problems 1, 5, 8 and 3, 6, 7 respectively. 

Remark 2.12. (Problem 9) Under what conditions does the inequality 

  𝑓 𝑥  𝛼𝑑𝑥 ≥   𝑓 𝑥 
𝑏

𝑎

𝑑𝑥 

𝛽𝑏

𝑎

#(2.11)  

hold for 𝛼 and 𝛽? 

Remark 2.13. (Problem 10) Under what conditions does the inequality  

  𝑓 𝑥  𝛼𝑑𝑥 ≤   𝑓 𝑥 
𝑏

𝑎

𝑑𝑥 

𝛽𝑏

𝑎

#(2.12)  

hold for 𝛼 and 𝛽? 

We can also propose the following generalizations of above open problems. 

Remark 2.14. (Problem 11) Under what conditions does the inequality 

  𝑓 𝑥  𝛼𝑑𝑥 ≥   𝑓𝛾  𝑥 
𝑏

𝑎

𝑑𝑥 

𝛽𝑏

𝑎

#(2.13)  

hold for 𝛼, 𝛽 and 𝛾? 

In the case of 𝛾 = 1, Problem 11 is equivalent to Problem 9. 

Remark 2.15. (Problem 12) Under what conditions does the inequality  

  𝑓 𝑥  𝛼𝑑𝑥 ≤   𝑓𝛾  𝑥 
𝑏

𝑎

𝑑𝑥 

𝛽𝑏

𝑎

#(2.14)  

hold for 𝛼, 𝛽 and 𝛾? 

In the case of 𝛾 = 1, Problem 12 is equivalent to Problem 10. 

Remark 2.16. (Problem 13) Under what conditions does the inequality  

  𝑓 𝑥  𝛼+𝛽𝑑𝑥 ≥   𝑔𝛼 𝑥 𝑓𝛽 𝑥 
𝑏

𝑎

𝑑𝑥 

𝜆𝑏

𝑎

#(2.15)  

hold for 𝛼, 𝛽 and 𝜆? 

In the case of 𝑔 =  𝑥 − 𝑎 , Problem 13 is equivalent to Problem 17. 

Remark 2.17. (Problem 14) Under what conditions does the inequality  

  𝑓 𝑥  𝛼+𝛽𝑑𝑥 ≤   𝑔𝛼 𝑥 𝑓𝛽 𝑥 
𝑏

𝑎

𝑑𝑥 

𝜆𝑏

𝑎

#(2.16)  

hold for 𝛼, 𝛽 and 𝜆? 

Remark 2.18. (Problem 15) Under what conditions does the inequality  
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  𝑓 𝑥  𝛼+𝛽𝑑𝑥 ≥   𝑓
𝛼

𝜆  𝑥 𝑔
𝛽

𝜆  𝑥 
𝑏

𝑎

𝑑𝑥 

𝜆−1𝑏

𝑎

#(2.17)  

hold for 𝛼, 𝛽 and 𝜆? 

Remark 2.19. (Problem 16) Under what conditions does the inequality  

  𝑓 𝑥  𝛼+𝛽𝑑𝑥 ≥   𝑓
𝛼

𝜆  𝑥 𝑔
𝛽

𝜆  𝑥 
𝑏

𝑎

𝑑𝑥 

𝛾𝑏

𝑎

#(2.18)  

hold for 𝛼, 𝛽, 𝜆 and 𝛾? 

In the case of 𝜆 = 1, Problem 16 is equivalent to Problem 13.  

Lastly, W. Liu et al. proposed the following three open problems in the end of their paper [26]. 

Remark 2.20. (Problem 17) Under what conditions does the inequality  

  𝑓 𝑥  𝛼+𝛽𝑑𝑥 ≥    𝑥 − 𝑎 𝛼𝑓𝛽  𝑥 
𝑏

𝑎

𝑑𝑥 

𝜆𝑏

𝑎

#(2.19)  

hold for 𝛼, 𝛽 and 𝜆? 

Remark 2.21. (Problem 18) Under what conditions does the inequality  

  𝑓 𝑥  𝛼+𝛽𝑑𝑥
𝑏

𝑎

  𝑓 𝑥  𝛼+𝛾𝑑𝑥
𝑏

𝑎

≥
   𝑥 − 𝑎 𝛼

𝑏

𝑎
𝑓𝛽  𝑥 𝑑𝑥 

𝛿

   𝑥 − 𝑎 𝛼
𝑏

𝑎
𝑓𝛾 𝑥 𝑑𝑥 

𝜆
#(2.20)  

hold for 𝛼, 𝛽, 𝛾, 𝛿 and 𝜆? 

Remark 2.22. (Problem 19) Assume that 𝜑 𝑥  is a convex function with 𝜑 0 = 0. Under what conditions does 

the inequality  

 𝑓 𝑥 𝑑𝑥
𝑏

𝑎

  𝑥 𝑑𝑥
𝑏

𝑎

≥
  𝜑 𝑓 𝑥  

𝑏

𝑎
𝑔 𝑥 𝑑𝑥 

𝛿

  𝜑  𝑥  
𝑏

𝑎
𝑔 𝑥 𝑑𝑥 

𝜆
#(2.21)  

hold for 𝛿 and 𝜆? 

3. Papers on Qi Type Integral Inequalities from 2001 through 2016 

In this section, we list systematically some papers on Qi type integral inequalities which give affirmative answers to 

Qi’s open problem and related problems from 2001 through 2016.  

Papers answering the Problem 1 (Remark 2.3):  

 In 2001 (and 2007), work of F. Qi and K. W. Yu (see Theorem 1 in [9] and Theorem 1.1 in [10]).  

 In 2001, work of N. Towghi (see Proposition 1 in [11]).  

 In 2002, work of T. K. Pogány (see Corollary 2.2 in [12]).  

 In 2003, work of M. Akkouchi.(see Theorem C in [13]). 

 In 2004, work of J. Pečarić and T. Pejković (see Theorem 2 in [14]).  

 In 2004, work of J. S. Sun (see Theorem 1 in [15]).  

 In 2006, work of Y. Chen and J. Kimball (see Theorem 3 and Theorem 6 in [16]).  

 In 2006, work of P. Yan and G. Gyllenberg (see Theorem 4 and Theorem 6 in [17]).  

 In 2007, work of H. Yong (see Corollary 0.2 in [18]).  

Paper answering the Problem 3 (Remark 2.6):  

 In 2004, work of J. S. Sun (see Theorem 1 in [15]).  

 In 2006, work of Y. Chen and J. Kimball (see Theorem 3 in [16]).  
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 In 2006, work of P. Yan and G. Gyllenberg (see Theorem 4 in [17]).  

Paper answering the Problem 4 (Remark 2.7):  

 In 2004, work of J. S. Sun (see Theorem 1 in [15]).  

Paper answering the Problem 5 (Remark 2.8):  

 In 2003, work of S. Mazouzi and F. Qi (see Corollary 3.6 in [19]).  

 In 2004, work of J. Pečarić and T. Pejković (see Corollary 3 in [14]).  

 In 2006, work of Y. Chen and J. Kimball (see Theorem 4 and Theorem 5 in [16]).  

 In 2006, work of P. Yan and G. Gyllenberg (see Theorem 4 in [20]).  

 In 2007, work of H. Yong (see Corollary 0.4 in [18]).  

 In 2007, work of Q. A. Ngô and P. H. Tung (see Theorem 2.2 in [21]).  

 In 2008, work of W. T. Sulaiman (see Theorem 2.8 in [22]).  

Papers answering the Problem 6 (Remark 2.9):  

 In 2006, work of Y. Chen and J. Kimball (see Theorem 4 in [16]).  

 In 2006, work of P. Yan and G. Gyllenberg (see Theorem 4 in [20]).  

Paper answering the Problem 7 (Remark 2.10):  

 In 2005, work of L. Bougoffa (see Proposition 2 in [7]).  

 In 2006, work of W. J. Liu et al. (see Theorem 2.1 in [8]).  

Paper answering the Problem 8 (Remark 2.11):  

 In 2006, work of W. J. Liu et al. (see Theorem 2.1 in [8]).  

Papers answering the Problem 9 (Remark 2.12):  

 In 2002, work of T. K. Pogány (see Theorem 2.1 and Theorem 4.1 in [12]).  

 In 2003, work of S. Mazouzi and F. Qi (see Corollary 3.5 in [19]).  

 In 2006, work of F. Qi et al. (see Theorem 1.1, Theorem 1.2, Theorem 1.3, Theorem 1.4 and Theorem 1.5 

in [23]).  

 In 2007, work of H. Yong (see Theorem 0.1 in [18]).  

Paper answering the Problem 10 (Remark 2.13): 

 In 2002, work of T. K. Pogány (see Theorem 3.1, Theorem 3.2 and Theorem 4.2 in [12]).  

 In 2006, work of F. Qi et al. (see Theorem 1.1, Theorem 1.2, Theorem 1.3, Theorem 1.4 and Theorem 1.5 

in [23]). 

Paper answering the Problem 11 (Remark 2.14):  

 In 2008, work of W. T. Sulaiman (see Theorem 2.5 in [22]).  

Paper answering the Problem 12 (Remark 2.15):  

 In 2004, work of J. Pečarić and T. Pejković (see Theorem 3.3 and Theorem 3.5 in [24]).  

 In 2008, work of W. T. Sulaiman (see Theorem 2.5 in [22]).  

Paper answering the Problem 13 (Remark 2.16):  

 In 2010, work of X. Chai, Y. Zhao and H. Du (see Theorem 2.3 and Theorem 2.4 in [25]).  

Paper answering the Problem 14 (Remark 2.17):  

 In 2010, work of X. Chai, Y. Zhao and H. Du (see Theorem 2.3 in [25]).  

Paper answering the Problem 15 (Remark 2.18):  
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 In 2009, work of W. Liu et al. (see Theorem 1 in [26]).  

Paper answering the Problem 16 (Remark 2.19):  

 In 2009, work of W. Liu et al. (see Theorem 2 in [26]).  

Paper answering the Problem 17 (Remark 2.20):  

 In 2016, work of A. Kashuri and R. Liko (see Theorem 2.1 in [27]).  

Paper answering the Problem 19 (Remark 2.22):  

 In 2016, work of A. Kashuri and R. Liko (see Theorem 2.2 in [27]).  

We now present the main result of above listed papers in the following subsections. 

3.1  Work of F. Qi and K. W. Yu Answering the Problem 1 

Theorem 3.1 ([10], p.97). Assume that 𝑓 is a continuous function on  𝑎, 𝑏 . If  

 𝑓 𝑥 𝑑𝑥 ≥  𝑏 − 𝑎 𝑡−1   for some
𝑏

𝑎

𝑡 > 1, 

then the inequality (2.3) is valid. 

3.2  Work of N.Towghi Answering the Problem 1 

Assume 𝑓 0  𝑥 = 𝑓(𝑥), 𝑓 −1  𝑥 =  𝑓 𝑠 𝑑𝑠
𝑥

𝑎
, and  𝑥  denote the greatest integer less than or equal to 𝑥. For 

𝑡 ∈ (𝑛, 𝑛 + 1], where 𝑛 is a positive integer, suppose 𝛾 𝑡 = 𝑡 𝑡 − 1  𝑡 − 2 ⋯  𝑡 −  𝑛 − 1  . For 𝑡 < 1, let 

𝛾 𝑡 = 1. 

Theorem 3.2 ([11], p.1). Suppose 𝑡 > 1, 𝑥 ∈  𝑎, 𝑏 , and 𝑓 𝑖  𝑎 ≥ 0 for 𝑖 ≤  𝑡 − 2 . If  

𝑓 𝑡−2  𝑥 ≥ 𝛾 𝑡 − 1  𝑥 − 𝑎  𝑡− 𝑡  , 

then  

 𝑏 − 𝑎 𝑡−1 ≤  𝑓 𝑥 𝑑𝑥
𝑏

𝑎

, 

and the inequality (2.3) is valid. 

3.3  Work of T. K. Pogány Answering the Problems 1, 9 and 10 

Theorem 3.3 ([12], p.3). Assume that 𝛽 > 0, max 𝛽, 1 < 𝛼 and suppose that 𝑓𝛼  is integrable on  𝑎, 𝑏 . For  

𝑓 𝑥 ≥  𝑏 − 𝑎 
𝛽−1

𝛼−𝛽 , 

we get the inequality (2.11).  

Corollary 3.4 ([12], p.3). For all 𝑓 𝑥 ≥  𝑏 − 𝑎 𝑡−2, 𝑓𝑡  integrable, the inequality (2.3) is valid for 𝑡 > 1. 

Theorem 3.5 ([12], p.3). Assume that 𝑓 is nonnegative, concave and integrable on  𝑎, 𝑏 , 𝛽 > 0 and max 𝛽, 1 <
𝛼. Assume 

𝑓 𝑥 ≤  
 1 + 𝛼  2𝛼 − 1 𝛼−1

6𝛼 𝛼 − 1 𝛼−1 𝑏 − 𝑎 1−𝛽
 

1

𝛼−𝛽

,    𝑥 ∈  𝑎, 𝑏 . 

Then we obtain the inequality (2.12). 

3.4  Work of M. Akkouchi Answering the Problem 1 

We will present M. Akkouchi's result. Before stating the results, the following Definition 3.6 is needed. 

Definition 3.6 ([13], p.122). Suppose that  𝑎, 𝑏  is a finite interval of the real line ℝ. For each real number 𝑟, we 

denote 𝔼𝑟 𝑎, 𝑏  the set of real continuous functions 𝑓 on  𝑎, 𝑏  differentiable on  𝑎, 𝑏 , such that 𝑓 𝑎 ≥ 0, and 

𝑓′ 𝑥 ≥ 𝑟 for all 𝑥 ∈  𝑎, 𝑏 . 

Theorem 3.6 ([13], p.124). Suppose that  𝑎, 𝑏  is a closed interval of ℝ. Suppose that 𝑝 ≥ 1 is a real number and 

assume 𝑓 ∈ 𝔼𝑝 𝑎, 𝑏 . Then we get 
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  𝑓 𝑥  𝑝+2𝑑𝑥 ≥
1

 𝑏 − 𝑎 𝑝−1
  𝑓 𝑥 𝑑𝑥

𝑏

𝑎

 

𝑝+1

.
𝑏

𝑎

 

3.5  Work of S. Mazouzi and F. Qi Answering the Problems 5 and 9 

Corollary 3.7 ([19], p.4). Suppose 𝑓 ∈ 𝕃1 𝑎, 𝑏 , the space of integrable functions on the interval  𝑎, 𝑏  with respect 

to the Lebesgue measure, such that  𝑓 𝑥  ≥ 𝑘 𝑥  a.e. for 𝑥 ∈  𝑎, 𝑏 , where  

 𝑏 − 𝑎 
 𝑝−1 

 𝑝−𝑞 ≤  𝑘 𝑥 𝑑𝑥 < ∞
𝑏

𝑎

 

for some 𝑝 > 𝑞 ≥ 1, thus  

   𝑓 𝑥  𝑑𝑥
𝑏

𝑎

 

𝑞

≤   𝑓 𝑥  𝑝𝑑𝑥
𝑏

𝑎

. 

Corollary 3.8 ([19], p.4). Assume that 𝑓 ∈ 𝐶𝑛  𝑎, 𝑏   satisfies 𝑓 𝑖  𝑎 ≥ 0 and 𝑓 𝑛  𝑥 ≥ 𝑛! for 𝑥 ∈  𝑎, 𝑏 , where 

0 ≤ 𝑖 ≤ 𝑛 − 1 and 𝑛 ∈ ℕ, the set of all positive integers, then the inequality (2.7) holds.  

3.6  Work of J. Pečarić and T. Pejković Answering the Problem 12 

Theorem 3.9 ([24], p.6). Suppose 𝛼 > 0, 1 < 𝛽 ≤ 2 and 𝛾 ≥ 2𝛼 + 1. The differentiable function 𝑓:  𝑎, 𝑏 → ℝ 

satisfies 𝑓 𝑎 = 0 and 0 ≤ 𝑓′ 𝑥 ≤ 𝑀 for all 𝑎 ≤ 𝑥 ≤ 𝑏, where 

0 < 𝑏 − 𝑎 ≤  
𝛽 𝛽 − 1  𝛼 + 1 2−𝛽𝑀𝛼𝛽 −𝛾

𝛾 − 𝛼
 

1

𝛾−𝛼𝛽 −𝛽 +1

. 

Then the inequality 

  𝑓 𝑥  𝛾𝑑𝑥 ≤   𝑓𝛼 𝑥 𝑑𝑥
𝑏

𝑎

 

𝛽𝑏

𝑎

 

holds. 

3.7  Work of J. Pečarić and T. Pejković Answering the Problems 1 and 5 

Theorem 3.10 ([14], p.2). Let 𝑓 ∈ 𝐶1  𝑎, 𝑏   satisfies𝑓 𝑎 ≥ 0 and  

𝑓′ 𝑥 ≥  𝑡 − 2  𝑥 − 𝑎 𝑡−3 for 𝑥 ∈  𝑎, 𝑏  

and 𝑡 ≥ 3. Then the inequality (2.3) holds.  

The equality is valid only if 𝑎 = 𝑏 or 𝑓 𝑥 = 𝑥 − 𝑎 and 𝑡 = 3.  

Corollary 3.11 ([14], p.2). Let 𝑓 ∈ 𝐶1  𝑎, 𝑏   satisfies 𝑓 𝑎 ≥ 0 and  

𝑓′ 𝑥 ≥ 𝑛 𝑥 − 𝑎 𝑛−1  for 𝑥 ∈  𝑎, 𝑏  

and a positive integer 𝑛, then the inequality (2.7) is valid. 

3.8  Work of J. S. Sun Answering the Problems 1, 3 and 4 

Theorem 3.12 ([15], p.1). Suppose that 𝑓 𝑥  is differentiable on  𝑎, 𝑏  and 𝑓 𝑎 = 0, we obtain  

a) If 𝑓′ 𝑥 ≥ 0 and 𝑡 ≤ 1, then we get inequality (2.6).  

b) If 𝑓′ 𝑥 ≥ 0 and 1 ≤ 𝑡 ≤ 2, then we get inequality (2.3).  

c) If 0 ≤ 𝑓′  𝑥 ≤  𝑡 − 2  𝑥 − 𝑎 𝑡−3 and 2 ≤ 𝑡 ≤ 3, then we get inequality (2.5).  

d) If 𝑓′ 𝑥 ≥  𝑡 − 2  𝑥 − 𝑎 𝑡−3 and 𝑡 ≥ 3, then we get inequality (2.3).  

3.9  Work of L. Bougoffa Answering the Problem 7 

Proposition 3.13 ([7], p.2). For a given positive integer 𝑝 ≥ 2, if 0 < 𝑚 ≤ 𝑓 𝑥 ≤ 𝑀 on  𝑎, 𝑏  with 

𝑀 ≤
𝑚  𝑝−1 2

 𝑏−𝑎 𝑝
, then we get  
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  𝑓 𝑥  
1

𝑝𝑑𝑥 ≤   𝑓 𝑥 𝑑𝑥
𝑏

𝑎

 

1−
1

𝑝𝑏

𝑎

. 

3.10 Work of Y. Chen and J. Kimball Answering the Problems 1, 3, 5 and 6 

Theorem 3.14 ([16], p.2). Suppose that 𝑝 is a positive number and 𝑓 𝑥  is continuous on  𝑎, 𝑏  and differentiable 

on  𝑎, 𝑏  such that 𝑓 𝑎 = 0. If  

 𝑓1 𝑝  
′
 𝑥 ≥  𝑝 + 1 

1

𝑝
−1

 for 𝑥 ∈  𝑎, 𝑏 , 

then 

  𝑓 𝑥  𝑝+2𝑑𝑥 ≥   𝑓 𝑥 𝑑𝑥
𝑏

𝑎

 

𝑝+1𝑏

𝑎

. #(3.1)  

If  

0 ≤  𝑓1 𝑝  
′
 𝑥 ≤  𝑝 + 1 

1

𝑝
−1

 

for 𝑥 ∈  𝑎, 𝑏 , then the inequality (3.1) reverses.  

Theorem 3.15 ([16], p.2). Assume 𝑓 𝑥  has derivative of the 𝑛-th order on the interval  𝑎, 𝑏  such that 𝑓 𝑖  𝑎 = 0 

for 𝑖 = 0,1,2, ⋯ , 𝑛 − 1. If 

𝑓 𝑛  𝑥 ≥
𝑛!

 𝑛 + 1  𝑛−1 
 

and 𝑓 𝑛  𝑥  is increasing, then the inequality (2.7) holds. If  

0 ≤ 𝑓 𝑛  𝑥 ≤
𝑛!

 𝑛 + 1  𝑛−1 
 

and 𝑓 𝑛  𝑥  is decreasing, then the inequality (2.7) reverses.  

3.11 Work of F. Qi, A. J. Li, W. Z. Zhao, D. W. Niu and J. Cao Answering the Problems 9 and 

10 

Theorem 3.16 ([23], p.2). Suppose that 𝑓 𝑥  is continuous and not identically zero on  𝑎, 𝑏 , differentiable in 
 𝑎, 𝑏 , with 𝑓 𝑎 = 0, and suppose that 𝛼, 𝛽 are positive real numbers such that 𝛼 > 𝛽 > 1. If 

 𝑓 𝛼−𝛽  𝛽−1   𝑥  
′
⋛

 𝛼 − 𝛽 𝛽1  𝛽−1  

𝛼 − 1
 for all  𝑥 ∈  𝑎, 𝑏 , 

then we get 

  𝑓 𝑡  𝛼𝑑𝑡
𝑏

𝑎

⋛   𝑓 𝑡 𝑑𝑡
𝑏

𝑎

 

𝛽

. 

3.12 Work of W. J. Liu, C. C. Li and J. W. Dong Answering the Problems 7 and 8 

Theorem 3.17 ([8], p.5). Suppose that 𝑝 > 2 is a positive number and 𝑓 𝑥  is continuous on  𝑎, 𝑏  and 

differentiable on  𝑎, 𝑏  such that 𝑓 𝑎 = 0.If  

 𝑓𝑝−2 ′ 𝑥 ≥ 𝑝𝑝  𝑝 − 2  𝑝 − 1 𝑝+1 for 𝑥 ∈  𝑎, 𝑏 , 

then 

  𝑓 𝑥  
1

𝑝𝑑𝑥 ≤   𝑓 𝑥 𝑑𝑥
𝑏

𝑎

 

1−
1

𝑝𝑏

𝑎

. #(3.2)  

If  

0 ≤  𝑓𝑝−2 ′ 𝑥 ≤ 𝑝𝑝  𝑝 − 2  𝑝 − 1 𝑝+1  for 𝑥 ∈  𝑎, 𝑏 , 

then the inequality (3.2) reverses.  
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3.13 Work of P. Yan and M. Gyllenberg Answering the Problems 5 and 6 

Theorem 3.18 ([20], p.4). Suppose 𝑛 ∈ ℤ+. Assume 𝑓 𝑥  has derivative of the 𝑛-th order on the interval  𝑎, 𝑏  and 

𝑓 𝑛−1  𝑥  is continuous on  𝑎, 𝑏  such that 𝑓 𝑖  𝑎 = 0 for 𝑖 = 0,1,2, ⋯ , 𝑛 − 1.  

a) If  

𝑓 𝑛  𝑥 ≥
𝑛!

 𝑛 + 1  𝑛−1 
for 𝑥 ∈  𝑎, 𝑏 , 

then the inequality (2.7) is valid.  

b) If  

0 ≤ 𝑓 𝑛  𝑥 ≤
𝑛!

 𝑛 + 1  𝑛−1 
for 𝑥 ∈  𝑎, 𝑏 , 

then the inequality (2.7) is reversed.  

3.14 Work of P. Yan and M. Gyllenberg Answering the Problems 1 and 3 

Theorem 3.19 ([17], p.2). Suppose that 𝑘 is a non-negative integer and 𝑝 is a positive number such that 𝑝 > 𝑘. 

Assume that 𝑓 𝑥  has a derivative of the  𝑘 + 1 -th order on the interval  𝑎, 𝑏  such that 𝑓 𝑘  𝑥  is continuous on 

 𝑎, 𝑏 , 𝑓 𝑥  is non-negative on  𝑎, 𝑏  and 𝑓 𝑖  𝑎 = 0 for 𝑖 = 0,1,2, ⋯ , 𝑘. 

a) If 

  𝑓 𝑘  
1

𝑝−𝑘 
′

 𝑥 ≥  
𝑘!  𝑝

𝑘
 

 𝑝 + 1 𝑝−1
 

1

𝑝−𝑘

,    𝑥 ∈  𝑎, 𝑏 , 

Then 

  𝑓 𝑥  𝑝+2𝑑𝑥 ≥   𝑓 𝑥 𝑑𝑥
𝑏

𝑎

 

𝑝+1𝑏

𝑎

. #(3.3)  

b) If 

0 ≤   𝑓 𝑘  
1

𝑝−𝑘 
′

 𝑥 ≤  
𝑘!  𝑝

𝑘
 

 𝑝 + 1 𝑝−1
 

1

𝑝−𝑘

,    𝑥 ∈  𝑎, 𝑏 , 

then the inequality (3.3) is reversed. 

3.15 Work of H. Yong Answering the Problem 9 

Theorem 3.20 ([18], p.1244). Assume 𝛼 > 𝛽 ≥ 2, 𝑚 =  𝛽 , 𝑓 𝑥 ∈ 𝐶1 𝑎, 𝑏 , 𝑓′ 𝑥 ≥ 𝑓 𝑥 ≥ 0 and  

 𝑓𝛼−𝛽 𝑥  
′
≥  𝛼 − 𝛽 

𝛽 𝛽 − 1 ⋯  𝛽 − 𝑚 + 1 

 𝛼 − 1  𝛼 − 2 ⋯  𝛼 − 𝑚 + 1 
 𝑥 − 𝛼 𝛽−𝑚 . 

Then the inequality (2.11) holds.  

Where  𝛽  denote the integer part of 𝛽. 

3.16 Work of Q. A. Ngô and P. H. Tung Answering the Problem 5 

Theorem 3.21 ([21], p.3). Suppose that 𝑛 is a positive integer. Assume 𝑓 𝑥  has a continuous derivative of the 𝑛-th 

order on the interval  𝑎, 𝑏  such that 𝑓 𝑖  𝑎 = 0, where 0 ≤ 𝑖 ≤ 𝑛 − 1, and  

𝑓 𝑛  𝑥 ≥
𝑛!

 𝑛 + 1  𝑛−1 
, 

then the inequality (2.7) is valid. 

3.17 Work of W. T. Sulaiman Answering the Problems 5, 11 and 12 

Theorem 3.22 ([22], p.891). Let 𝑓 be positive and has continuous 2nd derivative on the interval  𝑎, 𝑏  such that 

𝑓 𝑎 = 0, 𝑓′ 𝑎 = 0, and suppose 𝛾 > 𝛼 > 0, 𝛽 > 1, 𝛽 𝛼 + 1 >  𝛾 + 1 . If 
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𝑓 𝑡 𝑓′′  𝑡 

 𝑓′  𝑡  
2 ≥ 𝛽 𝛼 + 1 −  𝛾 + 1 , #(3.4)  

then  

 𝑓𝛾 𝑥 𝑑𝑥 ≥   𝑓𝛼 𝑥 𝑑𝑥
𝑏

𝑎

 

𝛽𝑏

𝑎

. #(3.5)  

If the inequality (3.4) reverses, then the inequality (3.5) reverses as well. 

Theorem 3.23 ([22], p.893). Suppose that 𝑛 is a positive integer. Assume 𝑓 𝑥  has a continuous derivative of the 

𝑛-th order on the interval  𝑎, 𝑏  such that 𝑓 𝑖  𝑎 = 0, where 0 ≤ 𝑖 ≤ 𝑛 − 1. Suppose that 𝛼, 𝛽, 𝛾 are positive 

numbers such that 𝛼𝛽 > 𝛾. If 

 𝑓 𝑛  𝑥  
𝛾−𝛼𝛽

≥
 𝑛𝛾 + 1 𝑛!

 𝑛𝛼 + 1 𝛽
 𝑏 − 𝑎 𝛽 𝑛𝛼 +1 − 𝑛𝛾 +1 , 

then the inequality (3.5) holds true.  

In particular, for 𝛾 = 𝑛 + 2, 𝛽 = 𝑛 + 1, 𝛼 = 1, the following inequality, 

 𝑓𝑛+2 𝑥 𝑑𝑥
𝑏

𝑎

≥   𝑓 𝑥 𝑑𝑥
𝑏

𝑎

 

𝑛+1

, 

which is given as inequality (2.7) in Problem 5 (Remark 2.8), is valid. 

3.18 Work of W. Liu, Q. A. Ngô and V. N. Huy Answering the Problems 15 and 16 

Theorem 3.24 ([26], p.203). Suppose that 𝑓 𝑥 ,𝑔 𝑥 ≥ 0 are continuous functions on  𝑎, 𝑏 , 𝑔 is non decreasing. 

Suppose that 𝜆, 𝛼, 𝛽 are positive constants with 𝛼 + 𝛽 ≥ 𝜆 > 1. If 

 𝑓 𝑡 𝑑𝑡
𝑏

𝑥

≥  𝑔 𝑡 𝑑𝑡
𝑏

𝑥

,    ∀𝑥 ∈  𝑎, 𝑏  

and 

 𝑓
𝛼+𝛽

𝜆  𝑡 𝑑𝑡
𝑏

𝑎

≥  𝑏 − 𝑎 𝜆−1 , 

then the inequality (2.17) is valid. 

Theorem 3.25 ([26], p.204). Suppose that 𝑓 𝑥 ,𝑔 𝑥 ≥ 0 are continuous functions on  𝑎, 𝑏 , 𝑔 is non decreasing. 

Suppose that 𝜆, 𝛾, 𝛼, 𝛽 are positive constant with 𝛼 + 𝛽 ≥ 𝜆 > 𝛾 > 1. If 

 𝑓 𝑡 𝑑𝑡
𝑏

𝑥

≥  𝑔 𝑡 𝑑𝑡
𝑏

𝑥

,    ∀𝑥 ∈  𝑎, 𝑏  

and  

 𝑓
𝛼+𝛽

𝜆
∙
𝜆−𝛾

𝛾−1 𝑥  

′

≥
 𝜆 − 𝛾 𝛾

1

𝛾−1

𝜆 − 1
,    ∀𝑥 ∈  𝑎, 𝑏 , 

then the inequality (2.18) is valid. 

3.19 Work of X. Chai, Y. Zhao and H. Du Answering the Problem 13 and 14 

Theorem 3.26 ([25], p.1815). Let 𝑓 𝑥 ,𝑔 𝑥 > 0 be continuous functions on  𝑎, 𝑏 .  

a) Assume that 𝜆 ≥ 1, 𝛼 ≠ 0, 𝛽 ∈ ℝ and  

𝑔𝜆 𝑥 ≤   𝑓𝛽
𝑏

𝑎

 𝑥 𝑑𝑥 

 1−𝜆 𝛼 

𝑓 𝑥 for all    𝑥 ∈  𝑎, 𝑏 , #(3.6)  

then we can get the inequality (2.15).  

b) Assume that  𝜆 < 0, 𝛼 ≠ 0, 𝛽 ∈ ℝ and (3.6), then the inequality (2.15) holds.  

c) Assume that 0 < 𝜆 ≤ 1, 𝛼 ≠ 0, 𝛽 ∈ ℝ and  
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𝑔𝜆 𝑥 ≥   𝑓𝛽
𝑏

𝑎

 𝑥 𝑑𝑥 

 1−𝜆 𝛼 

𝑓 𝑥 for all    𝑥 ∈  𝑎, 𝑏 , 

then the inequality in (2.15) reverses hence the inequality (2.16) holds. 

3.20 Work of A. Kashuri and R. Liko Answering the Problems 17 and 19 

Theorem 3.28 ([27], p.878). Suppose that 𝑓 𝑥 ≥ 0 is a continuous function on  𝑎, 𝑏  satisfying 

  𝑡 − 𝑎 𝑚𝑖𝑛  1,𝛽 
𝑏

𝑥

𝑑𝑡 ≤  𝑓𝑚𝑖𝑛  1,𝛽 
𝑏

𝑥

 𝑡 𝑑𝑡, ∀𝑥 ∈  𝑎, 𝑏 . 

Then for all 𝜆 ≥ 1 the inequality (2.19) is valid under each of the following conditions:  

a) For all 𝛽 > 1 and 𝛼 > 0 such that  

 𝑏 − 𝑎 𝛼+2

𝛼 + 2
≤ 1. 

b) For 𝛽 ∈ (0,1] and 𝛼 > 0 such that 

 𝑏 − 𝑎 𝛼+𝛽+1

𝛼 + 𝛽 + 1
≤ 1. 

Theorem 3.29 ([27], p.879). Assume that 𝑓 𝑥 , 𝑔 𝑥 ,  𝑥 > 0 are continuous functions on  𝑎, 𝑏  with 𝑓 𝑥 ≤

 𝑥  for all 𝑥 and such that 
𝑓 𝑥 

 𝑥 
 is decreasing and 𝑓 𝑥 , 𝑔 𝑥  are increasing. Suppose that 𝜑 𝑥  is positive and 

convex function with 𝜑 0 = 0.  

Then the inequality (2.21) is valid under each of the following conditions:  

a) 𝜆 = 𝛿 = 0 and 𝑓 𝑥 =  𝑥 , for all 𝑥 ∈  𝑎, 𝑏 ;  

b) 𝜆 = 𝛿 ∈ [1, +∞), for all 𝑥 ∈  𝑎, 𝑏 ;  

c) 𝜑 𝑓 𝑎  ≥
1

 𝑏−𝑎 𝑔 𝑎 
 for 1 ≤ 𝛿 < 𝜆;  

d) 𝜑 𝑓 𝑏  ≤
1

 𝑏−𝑎 𝑔 𝑎 
 for 1 ≤ 𝜆 < 𝛿. 

4. Future Work 

We plan to publish a paper on a review of applications of Qi type integral inequalities, see [28-59]. 
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