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 Abstract. In this paper we obtain oscillation criteria for the third order delay differential equation with 

“maxima” of the form  
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via comparison with the oscillatory behavior of first order differential equations. Some examples are given 
to illustrate the main results. 
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1.Introduction 

This paper deals with the oscillation of third order nonlinear delay differential equation with maxima of the form  

(1.1.)     ,  0,=)(max)())()(()( 0
]),([

ttsxtqtxtbta
tt

 




  

 subject to the following conditio 

(H1) )( ),( tbta  and ))(0, ),,([)( 0  tCtq ;  

(H2)   ,  and   are quotient of odd positive integer; 

(H3)
1

0( ) ([ , ), )t C t R   , tt )(  for 0tt   and  =)(lim tt  ;  

By a solution of equation (1.1), we mean a function )(tx  defined for all 0ttt x   such that 

))()(( ),( txtbtx  ,   ))()(()( txtbta   are continuous and differentiable for all xtt   and satisfies equation 

(1.1) for all xtt   and satisfy 0>}|:)({|sup Tttx   for any xtT  . It will be assumed that equation (1.1) has 

nontrivial solutions exist for all 00 t . A solution of equation (1.1) is called oscillatory if it has infinitely many 

zeros, otherwise it is called nonoscillatory. 

In the last few years, the oscillation and asymptotic behavior of differential equations with “maxima” 

received considerable attention because of the fact that they appear in the study of systems with automatic 

regulation, and automatic control of various technical systems. It often occurs that the law of regulation depends on 

maximum values of some regulated state parameter over certain intervals, see [4, 9]. 

In [1, 2, 3, 5], the authors study the oscillatory behavior of solutions of equation (1.1) when 1=  or 
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1= , and therefore in this paper we consider equation (1.1) which include many results considered in [1, 2, 3, 5] 

as special cases. 

The purpose of this paper is to investigate the oscillatory behavior of solutions of equation (1.1) with the 

cases   

(1.2)  


=
)(

1
  ,=

)(
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0
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0

dt
ta

dt
tb tt 

  

and   

(1.3) .<
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0
1/

0

 


dt
ta

dt
tb tt 

  

 The results obtained in this paper improvement and extend that of in [1, 2, 3, 5], and many known results. 

3. Oscillation Results 

 In this section, we state and prove our main results. Without loss of generality, we consider only positive 

solutions of equation (1.1) since the proof for the negative solution is similar. We begin with the following lemmas 

which will paly an important role in proving the main results. Define 
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Lemma 2.1  Let there is a 01 tT   such that 1>)( Tt  for 1> TTt   and  
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 hold. If x  be an eventually positive solution of equation (1.1), then x  satisfies one of the following two cases:   

    (I)   0>))()(( 0,>)( txtbtx   for all Tt  ;  

    (II)   0>))()(( 0,<)( txtbtx   for all Tt  .  
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Proof.  Let 0>))(( tx   for all 01 ttt  . From equation (1.1), we have  

     .  0<)(max)(=))()(()( 1
]),([

ttallforsxtqtxtbta
tt

 




 

Then  ))()(()( txtbta   strictly decreasing for all 1tt   and thus )(tx  and 
))()(( txtb   are eventually of one 

sign. We show that 0>))()(( txtb   for all 1tt  . Now assume 0))()((  txtb  for all 1tt   and we have two 

cases:   

   Case1. Let there exists 12 tt   sufficiently large, such that 0>)(tx  and   0<))()(( txtb   for 2tt  .  

    Case2. Let there exists 12 tt   sufficiently large, such that 0<)(tx  and   0<))()(( txtb   for 2tt  .  

 Case(1). In the case we have 
))()(( txtb   is strictly decreasing for 2tt   and there is a constant 0<M  such 

that  

    .  ,<))()(()( 2ttMtxtbta 


 

Dividing by )(ta  and then integrating from 2t  to t , we obtain  

 .
)(

1
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Letting t  and using (2.1), we have  )(tx , which is a contradiction. 

Next consider (2.2). Then, we have  
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 From equation (1.1) and the last inequality, we have  

(2.5)   )(max)())()((=0
] ),([

sxtqtyta
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    ),,()()())()(( 3ttBtytqtyta     

 where 
))()((=)( txtbty  . It is clear that 0>)(ty  and 0<)(ty , and it follows that  
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Integrating the last inequality from t  to   from t  to  , we obtain   

(2.6) ,  ),()( 3421 ttttAKty    

 where 0>)()(= 33

1/

1 tytaK  
. Integrating (2.5) from 4t  to t  and using (2.6), we obtain  
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Again integrating from 4t  to  , we get  
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which contradicts (2.2). 

 Case(2). In this case, we have  

 0.<=))()(())()(( 22 Ktxtbtxtb    

Dividing the above inequality by )(tb  and integrating from 2t  to t , we obtain  
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Letting t , then condition (2.3) implies that )(tx , which is a contradiction. Next, assume condition 

(2.4) is satisfied. One can choose 23 tt   with 2)( tt   for all 3tt   such that  
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Again integrating the above integrating from 3t  to t , we get  
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where 
1/= LK . Once again integrating the last inequality from 3t  to t , we obtain  
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Letting t  in the above inequality, we obtain a contradiction with (2.4). Thus, we have   0>))()(( txtb   

for 1tt   and hence 0>)(tx  or 0<)(tx  for 1tt  . Then proof is now complete.  

Lemma 2.2  Let conditions )( 1C  and )( 2C  be hold. Let )(tx  be an eventually positive solution of equation (1.1) 

for all 0tt   and suppose that Case(II) of Lemma 2.1 holds. If   
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(2.7) 
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 then 0)( tx  as t .   

Proof. Let )(tx  be a positive solution of equation (1.1) and there is a 01 tt   such that 0>))(( tx   for 1tt  . 

Since )(tx  is decreasing, we get 0=)(lim  txt . Assume 0> , then ))(( tx   for all 12 ttt  . 

Integrating equation (1.1) from t  to  , we find  
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 Since )(tx  is decreasing. Dividing the last inequality by )(ta  and then integrating from t  to  , we get  
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Again integrating from 2t  to  , we see that  
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which is a contradiction with (2.7). Thus 0=)(lim txt  . The proof is now complete.   

Theorem 2.1  Let conditions )( ),( 21 CC  and 0>)(t  be hold for all 0tt  , and there exists a differential 

function )(t  such that   

(2.8) .<)))(((    ,>)( 0,)( ttandttt     

 If both the first order delay equations   
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 when )))(((=)( tt  , are oscillatory, then every solution of equation (1.1) is oscillatory.  

Proof. Let )(tx  be a nonoscillatory solution of equation (1.1). Then, without loss of generality, there is a 01 tt   

such that 0>))(( 0,>)( txtx   for all 1tt  . Choose 12 tt   sufficiently large so that two cases of Lemma 2.1 

hold. 

 Case(I). In this case, we have  
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txtbtaty   It follows that  
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 Let there exists 23 tt   such that 2)( tt   for all 3tt  , then  
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From equation (1.1), we have  
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 Integrating the above inequality from t  to  , we get  
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The function )(ty  is clearly strictly decreasing and hence by Theorem 1 of [8] there exists a positive solution of 

equation (2.9) which contradicts that the equation (2.9) is oscillatory. 

 Case(II). Integrating equation (1.1) from t  to )(t , we obtain  
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Integrating again the last inequality from t  to )(t , we have  
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 Integrating the above inequality from t  to  , we obtain  
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In view of Theorem 1 in [8] there exists a positive solution of equation (2.10) which contradicts that equation (2.10) 

is oscillatory. This completes the proof.  

 By combining Case(I) in the proof of Theorems 2.1 with Lemma 2.2, we obtain the following theorem.  

Theorem 2.2  Let conditions (2.7), )( 1C  and )( 2C  be hold. If the first order delay equation (2.9) is oscillatory, 

then every solution )(tx  of equation (1.1) is either oscillatory or tends to zero as t .  

Remark 2.1 Let 1=)(tb  and 1= , then Theorem 2.1 and Theorem 2.2 are reduced to that of in [1, 2].  

Corollary 2.1  Let 1=
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 respectively, then every solution of equation (1.1) is oscillatory.  

Proof. Proceeding as in the proof of Theorem 2.1, we have (2.11) and (2.12) with 1=



. By condition (2.13) and 

(2.14) and Theorem 2.1.1 of [6], the inequalities (2.11) and (2.12) have no positive solution which a contradiction. 

This completes the proof.  

Corollary 2.2  Let 1<<0
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 then every solution of equation (1.1) is oscillatory.   

Proof. Proceeding as in the proof of Theorem 2.1, we have inequalities (2.11) and (2.12) with 1<<0



. By 

condition (2.15) and (2.16) and Theorem 3.9.3 of [6], the inequalities (2.11) and (2.12) have no positive solution. 

This contradiction completes the proof.  

3  Examples 

 In this section, we present two examples to illustrate the main results.  

Example 3.1  Consider the third order differential equation   
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It is easy to see that all condition (2.7) holds, and equation (2.9) reduces to   
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 where 321  , , ccc , and 4c  are constants. By Theorem 2.1.1 of [6] guarantees oscillation of equation (3.2) provided 
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and according to Theorem 2.2 every solution of equation (3.1) is either oscillatory or tends to zero as t .  

Example 3.2  Consider the third order differential equation   

(3.3)    1.  0,=)(max)(
] /2,[
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. It is easy to see that 

conditions (2.2), (2.4) and (2.7) hold. Further, equation (2.9) reduces to   
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 By Theorem 2.1.1 of [6] guarantees of oscillation of (3.4) provided that  
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and according to Theorem 2.2, every solution of equation (3.4) is either oscillatory or tends to zero as t .    
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