Moufang Loops of Odd Order p1^3p2^3....pn^3 .
Abstract
In [10], all Moufang loops of order p3q3 where p and q are odd primes with p<q, were shown to be associative if and only if q≢ 1(modp). In this paper, we generalize this result to Moufang loops of order p31, p32...p3n for distinct odd primes p1 ,p2.....pn with pi ≢ 1(modpj ) for every i, j ∈ {1,2,...n} .
Downloads
References
Bol G. (1937). Gewebe und gruppen. Mathematische Annalen, 114, 414-431.
Bruck R. H. (1971) A Survey of Binary Systems, Springer– Verlag, New York.
Leong F. & Rajah A. (1996). Moufang loops of odd order , Journal of Algebra, 181, 876– 883.
Leong F. & Rajah A. (1996). Moufang loops of odd order , Journal of Algebra, 190, 474– 486.
Rajah A. (2001). Moufang loops of odd order , Journal of Algebra, 235, 66– 93.
Leong F. & Rajah A. (1996). Moufang loops of odd order , Journal of Algebra, 184, 561– 569.
Grishkov A. N. & Zavarnitsine A. V. (2005). Lagrange’s Theorem for Moufang loops, Math. Proc. Camb. Phil. Soc., 139 pp. 41– 57.
Rajah A. & Chee W. L. (2011). Moufang loops of odd order , Bulletin of the Malaysian mathematical sciences society, (2) 34 (2) (2011), pp. 369– 377.
Rajah A. & Chee W. L. (2011). Moufang loops of odd order , International Journal of Algebra and Computation. 5,965– 975.
Rajah A. & Chee W. L. (2011). Moufang loops of odd order , International Journal of Algebra and Computation. 8, 1357– 1367.
Chee W. L. & Rajah A. (2014). Moufang Loops of odd order . Bulletin of the Malaysian mathematical sciences society, (2) 37(2), 425-435.
Copyright (c) 2016 Journal of Progressive Research in Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.