The Spectrum and The Numerical Range of W_f,φ W_f,ψ* and W_f,ψ* W_f,φ
Abstract
In this paper we study the spectrum and the numerical range of weighted composition operator with the adjoint of weighted composition operator W_f,φ W_f,ψ* and W_f,ψ* W_f,φ induced by linear –fractional self- maps 𝜑 𝑎𝑛𝑑 𝜓 of 𝕌 on Hardy space ℍ2.
Downloads
References
AboodE.H., " The composition operator on Hardy space 〖 H〗^2", Ph.D. Thesis, University of Baghdad, (2003).
Abood E. H., The numerical rang and normal operator , Mc. S. Thesis, University of Baghdad, 1996.
Bourdon Paul S. and Narayan S., "Normal weighted composition operators on the Hardy space ", J.Math.Anal. Appl.,367(2010),5771-5801.
CowenC. C. and Ko E.,"Hermitian weighted composition operator on H^2 " Trans.Amer.Math.Soc., 362(2010), 5771-5801.
Deddnes J. A. , "Analytic Toeplitz and Composition Operators", Con. J. Math., vol(5), 859-865, (1972).
GunatillakeG.,"invertible weighted composition operator ",J. Funct. Anal., 261(2011), 831-860.
Gunatillake, G. ,Jovovic, M. and Smith, W. ,Numerical range of weighted composition operators ,J. of Mat. Anal., (2014) .
Halmos P. R.,"A Hilbert space problem book", Sprinrer- Verlag, NewYork,(1974).
Shapiro J.H., "Composition Operators and Classical Function Theory", Springer-Verlage,New York, (1993).
Copyright (c) 2016 Journal of Progressive Research in Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.