### First digit counting compatibility for Niven integer powers

#### Abstract

It is claimed that the first digits of Niven integer powers follow a generalized Benford law with a specific parameter-free size-dependent exponent that converges asymptotically to the inverse power exponent. Numerical and other mathematical evidence, called first digit counting compatibility, is provided for this statement.

#### Keywords

#### Full Text:

PDF#### References

Benford, F. (1938). The law of anomalous numbers. Proc. Amer. Phil. Soc. 78, 551-572.

Berger, A. and T.P. Hill (2015). An Introduction to Benfordâ€™s Law. Princeton University Press, Princeton, New Jersey.

De Koninck, J.M. and N. Doyon (2003). On the number of Niven numbers up to x. Fibonacci Quarterly 41(5), 431-440.

De Koninck, J.M., Doyon N. and I. KÃ¡tai (2003). On the counting function for the Niven numbers. Acta Arithmetica 106, 265-275.

Author (2014-2016) 6 papers

Kennedy, R.E. and C.N. Cooper (1984). On the natural density of the Niven numbers. College Math. J. 15, 309-312.

Miller, S.J. (2015). (Editor). Benfordâ€™s Law: Theory and Applications. Princeton University Press, Princeton, New Jersey.

Newcomb, S. (1881). Note on the frequency of use of the different digits in natural numbers. Amer. J. Math. 4, 39-40.

Pietronero, L. Tossati, E., Tossati, V. and A. Vespignani (2000). Explaining the uneven distribution of numbers in nature: the laws of Benford and Zipf, Physica A 293, 297-304.

### Refbacks

- There are currently no refbacks.

Copyright (c) 2016 Journal of Progressive Research in Mathematics

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

**Copyright Â© 2016 Journal of Progressive Research in Mathematics.Â ***All rights reserved.*

*ISSN: 2395-0218.*

**For any help/support contact us at editorial@scitecresearch.com, jprmeditor@ scitecresearch.com.**