Reconstruction of a right-hand side of parabolic equation by radial basis functions method

  • Wei Liu Department of Mathematics and Computer Science, Changsha University, China
  • Baiyu Wang Department of Mathematics and Computer Science, Changsha University, China
Keywords: inverse problem, radial basis functions, meshless method, parabolic equation, right-hand side.

Abstract

The inverse problem of reconstructing the right-hand side (RHS) of a parabolic equation using the radial basis functions (RBF) method from a solution specified at internal points is investigated. In this paper, the RHS is unknown about time, and the method we use is the meshless method. Some numerical experiments are presented to illustrate the accuracy, stability and effectiveness. 

Downloads

Download data is not yet available.

References

J.R.CANNON, Y.Lin, An inverse problem of finding a parameter in a semi-linear heat equation, J. Math. Anal. Appl., 1990, 145: 470-484.

J.R.CANNON and P.DUCHATEAU, Structural identification of an unknown source term in a heat equation, Inverse Probl., 1998,14:535-551.

A.A.BURYKIN and A.M.DENISOV, Determination of the unknown sources in the heat-conduction equation, Comput.Math.Model., 1997,8:309-313.

A. FARCAS and D. LESNIC, The boundary-element method for the determination of a heat source dependent on one variable, J. Eng. Math., 2006,54:375-388.

L.Yan, C.L.Fu, and F.F.Dou, A computational method for identifying a spacewise-dependent heat source, Int.J.Numer.Meth.Biomed.Eng., 2010,26:597-608.

T.JOHANSSON and D.LESNIC, Determination of a spacewise dependent heat source, J.Comput.Appl.Math., 2007,209:66-80.

T.JOHANSSON and D.LESNIC, A variational method for identifying a spacewise-dependent heat source, IMA J.Appl.Math., 2007,72:748-760.

A.G.FATULLAYEV, E.CAN, Numerical procedures for determining unknown source parameters in parabolic equations, Math. Comput. Simul., 2000,54:159-167.

V.T.BORUKHOU, P.N.VABISHCHEVICH, Numerical solution of the inverse problem of reconstructing a distributed right-hand side of a parabolic equation,} Comput.Phys.Commun., 2000,126:32-36.

S.S. VALTCHEV, N.C. ROBERTY, A time-marching MFS scheme for heat conduction problems, Eng. Anal. Bound. Elem., 2008,32:480-493.

M. DEHGHAN, M. TATARI, Determination of a control parameter in a one-demensional parabolic equation using the method of radial basis functions, Math. Comput. Modelling,2006,44:1160-1168.

L.M.MA, Z.M.Wu, Radial basis functions method for parabolic inverse problem, Int.J.Comp.Math., 2011,88: 384-395.

H.WENDLAND, Scattered data approximation, Cambridge University press, Cambridge, UK, 2005.

M.TATARI, M.DEHGHAN, A method for solving partial differential equations via radial basis functuins: application to the heat equation, Eng. Anal. Bound. Elem.,2010,34:206-212.

M.D. BUHMANN, Radial Basis Functions:Throry and Implementations, Cambridge University Press, Cambridge,UK,2003.

H. WENDLAND, Piecewise polynominal, positive definite and compactly supported radial functions of minimal degree, Adv. Comput. Math.,1995,4:389-396.

Z.M. Wu, R. SCHABACK, Local error estimates for radial basis function interpolation of scattered data, IMA. J. Numer. Anal.,1993,13:13-27.

A.A.SAMARSKII, P.N.VABISHCHEVICH, Numerical methods for solving inverse problems of mathematical physics, Walter de Gruyter, Berlin, New Yory.2007.

Published
2016-04-09
How to Cite
Liu, W., & Wang, B. (2016). Reconstruction of a right-hand side of parabolic equation by radial basis functions method. Journal of Progressive Research in Mathematics, 7(2), 940-948. Retrieved from http://scitecresearch.com/journals/index.php/jprm/article/view/692
Section
Articles