On The Diophantine Equation βx_i^2+a=y^2 And βx_i^3+a=y^3
Abstract
In this paper, the Diophantine equations βπππ+π=ππ and βπππ+π=ππ where π₯1β π₯2β π₯3β β― and a is a positive integer have been discussed for possible positive integral solutions.
Downloads
References
Andrew Wiles (1995): Modular elliptic curve and Fermatβs Last Theorem. Annals of Mathematics, 141(3), 443-551.
Beals (1993):
Fermat (1637): Margin of a copy of Mathematica.
Gandhi & Sarma (2013): The Bealβs Conjecture (Disproved). Bull. Soc. Math. Ser. & Stand. Vol. 2(2), 40-43.
Ghanochi, J. (2014): An Elementary Proof of Fermat-Wiles Theorem and Generalization to Beal conjecture. Bull. Soc. Math. Ser. & Stand. Vol. 3(4), 4-9.
Gola, L.W. (2014): The Proof of the Bealβs Conjecture. Bull. Soc. Math. Ser. & Stand. Vol. 3(4), 23-31.
Gregorio, L.T.D. (2013): Proof for the the Bealβs conjecture and a new proof for the Fermatβs last theorem. Pure & Appl. Math. Jour. Vol. 2(5), 149-155.
Thiagrajan, R.C. (2014): A proof of Bealβs conjecture. Bull. Math. Sci. & Appl. Vol. 3(2), 89-93.
Copyright (c) 2016 Journal of Progressive Research in Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.