On The Diophantine Equation βˆ‘x_i^2+a=y^2 And βˆ‘x_i^3+a=y^3

  • Hari Kishan Department of Mathematics, D.N. College, Meerut (U.P.) India
  • Megha Rani Department of Mathematics, RKGIT, Ghaziabad (U.P.) India
  • . Sarita Department of Mathematics, DCR University, Murthal, Sonipat (Haryana) India
Keywords: Diophantine equation and integral solution.

Abstract

In this paper, the Diophantine equations βˆ‘π’™π’ŠπŸ+𝒂=π’šπŸ and βˆ‘π’™π’ŠπŸ‘+𝒂=π’šπŸ‘ where π‘₯1β‰ π‘₯2β‰ π‘₯3β‰ β‹― and a is a positive integer have been discussed for possible positive integral solutions.

Downloads

Download data is not yet available.

References

Andrew Wiles (1995): Modular elliptic curve and Fermat’s Last Theorem. Annals of Mathematics, 141(3), 443-551.

Beals (1993):

Fermat (1637): Margin of a copy of Mathematica.

Gandhi & Sarma (2013): The Beal’s Conjecture (Disproved). Bull. Soc. Math. Ser. & Stand. Vol. 2(2), 40-43.

Ghanochi, J. (2014): An Elementary Proof of Fermat-Wiles Theorem and Generalization to Beal conjecture. Bull. Soc. Math. Ser. & Stand. Vol. 3(4), 4-9.

Gola, L.W. (2014): The Proof of the Beal’s Conjecture. Bull. Soc. Math. Ser. & Stand. Vol. 3(4), 23-31.

Gregorio, L.T.D. (2013): Proof for the the Beal’s conjecture and a new proof for the Fermat’s last theorem. Pure & Appl. Math. Jour. Vol. 2(5), 149-155.

Thiagrajan, R.C. (2014): A proof of Beal’s conjecture. Bull. Math. Sci. & Appl. Vol. 3(2), 89-93.

Published
2016-01-26
How to Cite
Kishan, H., Rani, M., & Sarita, . (2016). On The Diophantine Equation βˆ‘x_i^2+a=y^2 And βˆ‘x_i^3+a=y^3. Journal of Progressive Research in Mathematics, 6(3), 812-818. Retrieved from http://scitecresearch.com/journals/index.php/jprm/article/view/560
Section
Articles