Subdirect Sum of Ternary Rings and Subdirectly Irreducible Ternary Rings
Abstract
In this paper we introduce the notions of subdirect sum of a family of ternary rings and the representation of a ternary ring as a subdirect sum of a family of ternary rings. We also introduce the notion of subdirectly irreducible ternary ring and characterize it. Lastly we characterize subdirectly irreducible Boolean ternary rings.Downloads
References
Brikhoff, G. Subdirect unions in universal algebra, Bulletin of American Mathematical society, vol. 50(1944), pp. 764-768.
Dornte, W. : Untersuchungen uber einen Verallgemeinerten Gruppenbegriff; Math. Z. 29 (1928), 1-19.
McCoy, N. H. The theory of rings, Chelsea publishing company, New York,1964.
Post, E. L.: Polyadic groups; Trans. Amer. Math. Soc. 48 (1940), 208-350.
Prufer, H. : Theorie der Abelschen Gruppen, I. Grundeigenschaften; Math.Z. 20 (1924), 165-187.
Lehmer, D. H.: A Ternary Analogue of Abelian Groups; Amer. J. Math., 54(2) (1932), 329-338.
Lister, W. G.: Ternary Rings; Trans. Amer. Math. Soc. 154 (1971), 37-55.
Salim, Md. and Dutta, T. K. - A Class of General Type of Regularities And Generalized Semiprime Ideals In Ternary Ring —- (Accepted for publication)—- The Southeast Asian Bullatin of Mathematics.
Salim, Md. Chanda, T. and Dutta, T. K. - Regular equivalence and strongly regular equivalence on multiplicative ternary hyperring.—- (Accepted for publication)—- Journal of Hyperstructure.
Copyright (c) 2016 Journal of Progressive Research in Mathematics

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.