Some new equilibrium existence theorems for pair of abstract economies

  • A. K. Dubey Department of Mathematics, Bhilai Institute of Technology, Bhilai House, Durg, Chhattisgarh 491001, India
  • Rita Shukla Department of Mathematics, Shri Shankracharya College of Engineering and Technology, Bhilai, Chhattisgarh 490020, India
  • R.P. Dubey Department of Mathematics, Dr. C.V.Raman University, Bilaspur, Chhattisgarh 495113, India
Keywords: Abstract economies, upper semicontinuous, lower semicontinuous, Hausdorff locally convex topological vector space.

Abstract

In this paper, we prove some new common equilibrium existence theorems for pair of non-compact abstract economies with an uncountable number of agents.

Downloads

Download data is not yet available.

References

J.P. Aubin and I. Ekeland, Applied Nonlinear Analysis, John Wiley and

Sons, New York (1984).

S.S. Chang, X. Wu and Z.F. Shen, Economic equilibrium theorems of

Shafer-Sonnenschein version and nonempty intersection theorems in

interval spaces, J. Math. Anal. Appl. 189,297-309(1995).

G. Debreu, A social equilibrium existence theorem, Proc. Nat. Acad. Sci, U.S.A. 38, 886-895(1952).

X.P. Ding and K.K. Tan, On equilibria of nonYcompact generalized games, J. Math. Anal. Appl., 177,226-238(1993).

X.P. Ding, W.K. Kim and K.K. Tan, A section theorem and its applications, Bull. Austral. Math. Soc. 46, 205-212(1992).

A.K. Dubey, A. Narayan and R.P. Dubey, Maximal elements and pair of generalized games in locally convex topological vector spaces, Int. J. of Math. Sci. & Engg. Appls, 5 No. III, 371-380 (May, 2011).

A.K. Dubey, A. Narayan and R.P. Dubey, Fixed Points, Maximal elements and equilibria of generalized games, Int. J. of Pure and Appl. Math., 75(4), 413-425(2012).

A.K. Dubey and A. Narayan, Maximal elements and pair of generalized

games for U-majorized and condensing correspondences, Nonlinear Fuct.

Anal. & Appl. Vol.18, No. 2,259-267(2013).

K. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U.S.A. 38,121-126(1952).

C.J. Himmelberg, Fixed points of compact multifunctions, J. Math. Anal. Appl. 38,205-207(1972).

N. Huang, Some new equilibrium theorems for abstract economies, Appl. Math. Lett., Vol.11, No.1, 41-45(1998).

D.I. Rim and W.K. Kim, A fixed point theorem and existence of

equilibrium for abstract economies, Bull. Austral. Math. Soc. 45, 385-

(1992).

W. Shafer and H. Sonnenschein, Equilibrium in abstract economies

without order preferences, J. Math. Econom., 2, 345-348 (1975).

K.K.Tan and J. Yu, A new minimax inequalities with applications to

existence theorems of equilibrium points, J. Optim. Theory Appl. 82, 105-

(1994).

K.K. Tan and X.Z.Yuan, Approximation method and equilibria of abstract economies, Proc. Amer. Math. Soc. 122, 503-510 (1994).

E. Tarafdar, An extension of Fan’s Fixed point theorem and equilibrium point of abstract economy, Comment. Math. Univ. Carolin. 31,723-730(1990).

E. Tarafdar and X.Z. Yuan, Equilibria for nonYcompact generalized

games, Bull. Polish Acad. Sci. Math. 41, 229-239(1993).

X.Wu, A new fixed point theorem and its applications Proc., Amer. Math. Soc., Vol.125,no.6, 1779-1783(1997).

N.C. Yannelis, Equilibria in nonYcooperative models of competition, J.

Econom. Theory 41, 96-111(1987).

N.C.Yannelis, N.D. Prabhakar, Existence of maximal elements and

equilibria in linear topological spaces, J. Math. Econom.,12, 233-

(1983).

Published
2015-11-04
How to Cite
Dubey, A. K., Shukla, R., & Dubey, R. (2015). Some new equilibrium existence theorems for pair of abstract economies. Journal of Progressive Research in Mathematics, 5(5), 628-633. Retrieved from http://scitecresearch.com/journals/index.php/jprm/article/view/439
Section
Articles