Generalization of a fixed point theorem of Suzuki type in complete metric space

  • Rakesh Tiwari Associate Prof. in Mathematics, Govt. V. Y. T. PG. Autonomous College, Durg (C.G.)491001 India
  • K. C. Deshmukh Department of Mathematics, R. T. M. Nagpur University Nagpur (Maharashtra), 440013 India
  • Savita Gupta Department of Mathematics, Shri Shankaracharya Institute of Technology and Management Bhilai(C.G.), 492001, India
Keywords: Common fixed point, Complete metric Space.

Abstract

The aim of this paper is to generalize a fixed point result given by Popescu[17]. Our results complement and extend very recent results proved by Suzuki [T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136 (2008) 1861 - 1869]. To validate our result an example is given.

Downloads

Download data is not yet available.

References

J. Bogin, A generalization of a fixed point theorem of Goebel, Kirk and Shimi, Canad. Math. Bull. 19 (1976) 7 - 12.

Lj.B. Ciric, On some nonexpansive type mappings and fixed point, Indian J. Pure Appl. Math. 24 (3) (1993) 145 - 149.

Lj.B. Ciric, On a common fixed point theorem of a Gregus type, Publ. Inst. Math. 49 (1991) 174 - 178.

Lj.B. Ciric, Diviccaro, Fisher and Sessa Open questions, Arch. Math. 29 (1993) 145 - 152.

Lj.B. Ciric, On a generalization of a Gregus fixed point theorem, Czechoslovak Math. J. 50 (2000) 449 - 458.

Lj.B.Ciric, A new class of nonexpansive type mappings and fixed points, Czechoslovak Math. J. 49 (124) (1999) 891 - 899.

D. Delbosco, O. Ferrero, F. Rossati, Teoremi di punto fisso per applicazioni negli spazi di

Banach, Boll. Un. Mat. Ital. Sez. A (6) 2 (1993) 297 - 303.

S. Dhompongsa and H. Yingtaweesittikul, Fixed points for multivalued mappings and the metric completeness, Fixed Point Theory Appl. (2009) 1 - 15. Article ID 972395.

M.L. Diviccaro, B. Fisher, S. Sessa, A common fixed point theorem of Gregu type, Publ. Math. Debrecen 34 (1997) 83 - 89.

B. Fisher, Common fixed points on a Banach space, Chung Yuan J. 11 (1982) 19 - 26.

M. Gregus, A fixed point theorem in Banach spaces, Boll. Unione Mat. Ital. Sez. A (5) 17 (1980) 193 - 198.

G. Jungck, On a fixed point theorem of Fisher and Sessa, Int. J. Math. Math. Sci. 13 (1990) 497 - 500.

R. Kannan, Some results on fixed point theory-II, Amer. Math. Monthly 76 (1969) 405 - 408.

M. Kikkawa, T. Suzuki, Three fixed point theorems for generalized contractions with constants in complete metric spaces, Nonlinear Anal. 69 (2008) 2942 - 2949.

B.I. Li, Fixed point theorems of nonexpansive mappings in convex metric spaces, Appl. Math. Mech. 10 (1989) 183 - 188.

O. Popescu, Two fixed point theorems for generalized contractions with constants in complete metric space, Cent. Eur. J. Math. 7 (3) (2009) 529 - 538.

O. Popescu, Two generalizations of some fixed point theorems, Computer and mathematics with applications 62(2011) 3912 - 3919.

Rakesh Tiwari, S. KShrivastava, V. K. Pathak, A common fixed point theorem for weak compatible mappings in symmetric spaces satisfying an integral type contractive condition, Hecettepe Journal of mathematics and statistics 39(2), (2010) 151 - 158.

Published
2015-08-23
How to Cite
Tiwari, R., Deshmukh, K. C., & Gupta, S. (2015). Generalization of a fixed point theorem of Suzuki type in complete metric space. Journal of Progressive Research in Mathematics, 5(1), 482-486. Retrieved from http://scitecresearch.com/journals/index.php/jprm/article/view/306
Section
Articles