Rogue wave solutions for an inhomogeneous fifth-order nonlinear Schrodinger equation from Heisenberg ferromagnetism
Abstract
In this paper, generalized Darboux transformation for an inhomogeneous fifth-order nonlinear Schrodinger equation from Heisenberg ferromagnetism are constructed according to which rouge wave solutions of the equation are obtained. Influences of equation parameter on the evolution of rogue waves are discussed. With the aid of Mathematica, some special solutions are graphically illustrated which could help to better understand the evolution of rogue waves.Downloads
References
E. Pelinovsky and C. Kharif. (2008). Extreme ocean waves, Springer, Berlin, Heidelberg, 2008.
C. Garrett and J. Gemmrich. (2009). Rogue waves, Phys. Today 62 (2009), 62-63.
A.R. Osborne. (2010). Nonlinear Ocean waves and the inverse scattering transform, Academic Press, 2010.
D. R. Solli, C. Ropers, P. Koonath and B. Jalali. (2007). Optical rogue waves, Nature, 450 (2007), 1054-1057.
D. R. Solli, C. Ropers and B. Jalali. (2008). Active control of rogue waves for stimulated supercontinuum generation, Phys. Rev. Lett. 101 (2008), 233902.
M. Erkintalo, G. Genty and J. M. Dudley. (2009). Rogue-wave-like characteristics in femtosecond supercontinuum generation, Opt. Lett. 34 (2009), 2468-2470.
J. S. He, E. G. Charalampidis, P. G. Kevrekidis and D. J. Frantzeskakis. (2014) Rogue waves in nonlinear Schrödinger models with variable coefficients: Application to Bose-Einste incondensates, Phys. Lett. A 378 (2014), 577-583.
Y. V. Bludov, V. V. Konotop and N. Akhmediev. (2009). Matter rogue waves, Phys. Rev. A 80 (2009), 033610.
Y. V. Bludov, V. V. Konotop and N. Akhmediev. (2010). Vector rogue waves in binary mixtures of Bose-Einstein condensates, Eur. Phys. J. Spec. Top. 185 (2010), 169-180.
M. S. Ruderman. (2010). Freak waves in laboratory and space plasmas, Eur. Phys. J. Spec. Top. 185 (2010), 57-66.
W. M. Moslem, P. K. Shukla and B. Fliasson. (2011). Surface plasma rogue waves, Europhys. lett. 96 (2011), 25002.
N. Akhmediev, A. Ankiewicz and M. Taki. (2009). Waves that appear from nowhere and disappear without a trace, Phys. Lett. A 373 (2009), 675-678.
N. Bigaouette, E. Ackad and L. Ramunno. (2012). Nonlinear grid mapping applied to an FDTD-based, multi-center 3D Schrödinger equation solver, Comput. Phys. Commun. 183 (2012), 38-45.
X. F. Pang. (2009). The dynamic natures of microscopic particles described by nonlinear Schrödinger equation, Physica B 404 (2009), 2353-2358.
P. Dubard, P. Gaillard, C. Klein and V. Matveev. (2010). On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation, Eur. Phys. J.Spec. Top. 185 (2010), 247-258.
W. R. Sun, B. Tian, Y. Jiang and H. L. Zhen. (2014). Double-Wronskian solitons and rogue waves for the inhomogeneous nonlinear Schrödinger equation in an inhomogeneous plasma, Annals Phys. 343 (2014), 215-227.
P. Gaillard. (2011). Families of quasi-rational solutions of the NLS equation and multi-rogue waves, J. Physica A: Math. Theor. 44 (2011), 435204.
P. Dubard and V. B. Matveev. (2011). Multi-rogue waves solutions to the focusing NLS equation and the KP-I equation, Nat. Hazards Earth Syst. 11 (2011), 667-672.
D. J. Kedziora, A. Ankiewicz and N. Akhmediev. (2011). Circular rogue wave clusters, Phys Rev E 84 (2011), 056611.
M. S. M. Rajan, A. Mahalingam and A. Uthayakumar. (2014). Nonlinear tunneling of optical soliton in 3 coupled NLS equation with symbolic computation. Annals Phys. 346 (2014), 1-13.
L. J. Li, Z. W. Wu, L. H. Wang and J. S. He. (2013). High-order rogue waves for the Hirota equation, Annals Phys. 34 (2013), 198-211.
X. M Li and A. H Chen. (2005). Darboux transformation and multi-soliton solutions of Boussinesq-Burgers equation, Phys. Lett. A 342 (2005), 413-420.
W. Z. Zhao, Y. Q. Bai and K. Wu. (2006). Generalized inhomogeneous Heisenberg ferromagnet model and generalized nonlinear Schrödinger equation, Phys. Lett. A 352 (2006), 64-68.
M. Daniel, L. Kavitha and R. Amuda. (1999). Soliton spin excitations in an anisotropic Heisenberg ferromagnet with octupole-dipole interaction, Phys. Rev. B 59 (1999), 13774-13781.
L. Kavitha, P. Sathishkumar, M. Saravanan and D. Gopi. (2011). Soliton switching in an anisotropic Heisenberg ferromagnetic spin chain with octupole-dipole interaction, Phys. Scr, 83 (2011), 055701.
L. Kavitha, P. Sathishkumar and D. Gopi. (2011). Energy¨Cmomentum transport through soliton in a site-dependent ferromagnet, Commun. Nonl. Sci. Numer. Simulat. 16 (2011), 1787-1803.
Wang, W. R. Shan, B. Tian and Z. Tan. (2015). Darboux transformation and conservation laws for an inhomogeneous fifth-order nonlinear Schrödinger equation from the Heisenberg ferromagnetism, Commun. Nonl. Sci. Numer. Simulat. 20 (2015), 692-698.
Y. S. Tao and J. S. He. (2012). Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformation, Phys. Rev. E 85 (2012), 026601.
X. Y. Wen. (2013). A new integrable lattice hierarchy associated with a discrete matrix spectral problem: N-fold Darboux Transformationa nd explicit solutions, Rep. Math. Phys. 71 (2013), 15-32.
D. Levi. (1986). Toward a unification of the various techniques used to integrate non-linear partial differential equations: Bäcklund and Darboux transformations vs. dressing method, Rep. Math. Phys. 23 (1986), 41-56.
B. L. Guo, L. M. Ling and Q. P. Liu. (2012). Nonlinear Schrödinger equation: Generalized Darboux transformation and rogue wave solutions, Phys. Rev. E 85 (2012), 026607.
L. J. Li, Z. W. Wu, L. H. Wang and J. S. He. (2013). High-order rogue waves for the Hirota equation, Annals Phys. 334 (2013), 198-211.
X. Wang, Y. Q. Li and Y. Chen. (2014). Generalized Darboux transformation and localized waves in coupled Hirota equations, Wave Mot. 51 (2014), 1149-1160.
N. V. Priya and M. Senthilvelan. (2015). Generalized Darboux transformation and th order rogue wave solution of a general coupled nonlinear Schrödinger equations, Commun. Nonl. Sci. Numer. Simulat. 20 (2015), 401-420.
X. Wang, Y. Q. Li, F. Huang and Y. Chen. (2015). Rogue wave solutions of AB system, Commun. Nonl. Sci. Numer. Simulat. 20 (2015), 434-442.
X. Wang, B. Yang, Y. Chen and Y. Q. Yang. (2014). Higher-order rogue wave solutions of the Kundu-Eckhaus equation, Phys. Scr. 89 (2014), 095210.
D. W. Zuo, Y. T. Gao, Y. J. Feng and L. Xue. (2014). Rogue-wave interaction for a higher-order Schrödinger-Maxwell-Bloch system in optical fibers, Nonl. Dyn. 78 (2014), 2309-2318.
B. Tian and Y. T. Gao. (2005). Symbolic-computation study of the perturbed nonlinear Schrödinger model in inhomogeneous optical fibers. Phys. Lett. A 342 (2005), 228-236.
Copyright (c) 2015 Journal of Progressive Research in Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.