Armendariz Semirings and Semicommutative Semirings

  • Dharitri Sinha University of Calcutta
  • Md Salim Masud Molla
Keywords: Armendariz semiring, p.s Armendariz semiring, Abelian semir- ing, Reduced semiring, Right quotient semiring, Semicommutative semiring, k-ideal.


In this paper we study Armendariz semiring, which has been introduced by V.Gupta and P.kumar, in the paper entitled `Armendariz and qusi-Armendariz and PS-semirings' [8]. We extend some results of Armendariz rings and semi-commutative rings of [3] for semirings with $1\neq0$. (i)We obtain that for a semirings S, S is Armendariz if and only eS and (1+e)S are Armendariz for every idempotent e of S if and only if eS and (1+e)S are Armendariz for every central idempotent e of S. (ii) For a semiring S if S/I is an Armendariz semiring for some reduced ideal I of S then S is Armendariz.


Download data is not yet available.


[1] Anderson, D. D., Camillo, V. (1998). Armendariz rings and Gaussian rings. Communications in Algebra. 26(7): 2265-2272. DOI:10.1080/00927879808826274.
[2] Armendariz, E. P. (1974). A note on Extensions of Bear and p.p. rings, J.Austral. Math.Soc. 18: 470-473. DOI:10.1017/S1446788700029190.
[3] Chan, H., Yang, L., Smoktunowicz, A. (2002). Armendariz rings and semicommutative rings, Communications in Algebra. 30(2): 751-761. DOI:10.1081/AGB-120013179.
[4] Glazek, K. (2002). A Guide to the Literature on semirings and their Application in Mathematics and Information science; Kluwer Academic Publishers; Dorrecht.
[5] Glazek, K. (2002). Linear Algebra over Semirings; A Guide to the Literature on Semirings and their Applications in Mathematics and Information Sciences pp 25-42. DOI:10.1007/978-94-015-9964-1-4.
[6] Golan, J. S. (1999). Semirings and their Applications, Kluwer Academic Publishers; Dorrecht.
[7] Goldie, A. W. (1972). Struture of noetherian rings, In book: Lecture on rings and modules in Mathematics, 246: pp.213-321. DOI:10.1007/BFb0059567.
[8] Gupta, V., Kumar, P. (2011). Armendariz and Quasi-Armendariz semirings and PS-semirings,Asia-Euro J. of Math,world scintic . 4(1): 81-94.
[9] Hebisch, U., Weinert, H. J. (1998). Semirings-Algebric Theory and applications in computer science; World scientic publication co. Inc; River Edge; NJ.
[10] Kim, N. K., Lee, Y. (2000). Armendariz rings and reduced rings. J.Algebra. 223: 477-488. DOI:10.1006/jabr.1999.8017.
[11] Rega, M. B., Chhawcharia, S. (1997). Armendariz rings proc. Japan Acad.ser. A Math.Sci.73: 14-17. DOI: 10.3792/pjaa.73.14.
[12] Reid, A. (2009). Twisted group rings which are semi-prime Goldie rings. Cambridge University Press. DOI:10.1017/S0017089500002433.
[13] Vandiver, H. S. (1934). Note on a Simple Type of Algebra in which the cancellation Laws of Addition does not Hold. Bull. Amr. Math. Soc. 40(12), 914-920.
How to Cite
Sinha, D., & Molla, M. S. (2021). Armendariz Semirings and Semicommutative Semirings. Journal of Progressive Research in Mathematics, 18(4), 28-35. Retrieved from