Study of the homology theory of Hecke Algebras
Keywords:
Graded algebra-Hecke algebras – Cyclic homology.
Abstract
In the ready product, we study the simplicial and cyclic homology of a unital -graded Hecke algebras over and consider a couple of properties of it. Along these lines, we given a relation between simplicial and cyclic homology of graded Hecke algebras.
Downloads
Download data is not yet available.
References
[1] Alaa Hassan Noreldeen, “On the (co)homology with inner symmetry of schemes”,
Life Sic. J 2014;11(12):[698-703].(ISSN:1097-8135).
[2] Alaa Hassan Noreldeen, “On the Homology Theory of Operator Algebras”, International Journal of Mathematics and Mathematical Sciences, Volume 2012, Article ID 368527, 13 pages, doi:10.1155/2012/368527.
https://pdfs.semanticscholar.org/b818/1143c6c71a7d8f5c644f50fdb7adbe84bddb.pdf
[3] Alaa H. N. and Gouda, Y. Gh.,"On the Trivial and Nontrivial cohomology with
inner symmetry of Operator Algebras, Int. J. Math. Analysis, Vol. 3 No. 8
(2009), 377-384.
[4] Alaa Hassan Noreldeen, “On the (co)homology with inner symmetry of schemes”, Life Sic. J.2014;11(12):[698-703].(ISSN:1097-8135).
[5] J-L. Loday, Cyclic homology, Second Springer-Verlag, New York (1998).
[6] Alaa Hassan Noreldeen, “Some results on the dihedral homology of Banach algebras”, Life Sci. J. 2013; 10(4):1216-1220, ISSN:1097-8135
[7] V. Nistor, “A non-commutative geometry approach to the representation theory
of reductive p-adic groups: Homology of Hecke algebras, a survey and some new
results”, pp. 301–323 in: Noncommutative geometry and number theory, Aspects
of Mathematics E37, Vieweg Verlag, 2006.
[8] M. Solleveld, “Parabolically induced representations of graded Hecke algebras”,
arXiv: 0804.0433, 2008.
[9] Gouda, Y. Gh., Alaa, H. N. &M. Saad, "Reflexive and dihedral (co)homology of Z/2 Graded Algebras", International journal of Mathematics and statistics Invention (IJMSI), E-ISSN:2321-4767, P-2321-4759,V5, Issue 1,1(2017) 23-31. DOI: 10.1155/S0161171201000849
Life Sic. J 2014;11(12):[698-703].(ISSN:1097-8135).
[2] Alaa Hassan Noreldeen, “On the Homology Theory of Operator Algebras”, International Journal of Mathematics and Mathematical Sciences, Volume 2012, Article ID 368527, 13 pages, doi:10.1155/2012/368527.
https://pdfs.semanticscholar.org/b818/1143c6c71a7d8f5c644f50fdb7adbe84bddb.pdf
[3] Alaa H. N. and Gouda, Y. Gh.,"On the Trivial and Nontrivial cohomology with
inner symmetry of Operator Algebras, Int. J. Math. Analysis, Vol. 3 No. 8
(2009), 377-384.
[4] Alaa Hassan Noreldeen, “On the (co)homology with inner symmetry of schemes”, Life Sic. J.2014;11(12):[698-703].(ISSN:1097-8135).
[5] J-L. Loday, Cyclic homology, Second Springer-Verlag, New York (1998).
[6] Alaa Hassan Noreldeen, “Some results on the dihedral homology of Banach algebras”, Life Sci. J. 2013; 10(4):1216-1220, ISSN:1097-8135
[7] V. Nistor, “A non-commutative geometry approach to the representation theory
of reductive p-adic groups: Homology of Hecke algebras, a survey and some new
results”, pp. 301–323 in: Noncommutative geometry and number theory, Aspects
of Mathematics E37, Vieweg Verlag, 2006.
[8] M. Solleveld, “Parabolically induced representations of graded Hecke algebras”,
arXiv: 0804.0433, 2008.
[9] Gouda, Y. Gh., Alaa, H. N. &M. Saad, "Reflexive and dihedral (co)homology of Z/2 Graded Algebras", International journal of Mathematics and statistics Invention (IJMSI), E-ISSN:2321-4767, P-2321-4759,V5, Issue 1,1(2017) 23-31. DOI: 10.1155/S0161171201000849
Published
2021-04-28
How to Cite
Alrashidi, Y. (2021). Study of the homology theory of Hecke Algebras. Journal of Progressive Research in Mathematics, 18(1), 72-86. Retrieved from http://scitecresearch.com/journals/index.php/jprm/article/view/2043
Issue
Section
Articles
Copyright (c) 2021 Journal of Progressive Research in Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.