Estimates of Fekete-Szego Functional of a Sub- class of Analytic and Bi-Univalent Functions by Means of Chebyshev Polynomials

  • Rasheed Olawale Ayinla Department of Statistics and Mathematical Sciences, Kwara State University, Malete, Nigeria
Keywords: Analytic functions, Salagean dierential operator and Chebyshev polynomial.

Abstract

In this work, a new subclass C( ; ; n; t) of analytic and bi-univalent functions is dened by subordination principle and investigated. The initial coecient bounds and the upper estimates of the Fekete-Szego functional were obtained using Chebyshev polynomials.

Downloads

Download data is not yet available.

References

[1] Ali, R.M., Lee, S.K. Ravichandran, V. & Supramaniam, S. (2012). Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Applied Mathematics Letters, 25(3), 344-351.
[2] Altinkaya, S. & Yalcin, S. (2017). On the Chebyshev polynomial coefficient problem of some subclasses of bi-univalent functions. Gulf Journal of Mathematics, 5(3), 34-40.
[3] Brannan, D.A. & Clunie J.G. (1980). Aspects of contemporary complex analysis. Proceedings of the NATO Advanced Study Institute, New York
[4] Brannan, D.A. & Taha, T.S. (1986). On some classes of bi-univalent functions. Studia Universitatis Babes-Bolyai Mathematica, 31(2), 70-77.
[5] Bulut, S., Magesh, N. & Balaji, K. (2017). Initial bounds for analytic and bi-univalent functions by means of Chebyshev polynomials. Journal of Classical Analysis, 11(1), 81-89.
[6] Duren, P.L. (1983). Univalent Functions. New York: Springer-Verlag,Inc.
[7] Fekete, M. & Szego, G. (1933). Eine Bermerkung ube ungerade schlichte functionen. Journal of London Mathematical Society, 8, 85-89.
[8] Keogh, F. R. & Merkes, E.P. (1969). A coefficient inequality for certain classes of analytic functions, Proceedings of America Mathematical Society, 20, 8-12.
[9] Lewin, M. (1967). On a coefficient problem for bi-univalent functions. Proceedings of the American Mathematical Society, 18, 63-68.
[10] Ma, W. & Minda, D. (1994). A unied treatment of some special classes of univalent functions. Proceedings of the International Conference on Complex Analysis, Nankai Institute of Mathematical International Press China, 157-169.
[11] Mason, J.C. & Handscomb, D.C. (2003). Chebyshev Polynomials. New York: McGraw-Hill Inc.
[12] Salagean, S. (1983). Subclasses of univalent functions.Lecture notes in Mathematics, 1013, 362-372.
[13] Strivastava, H.M., Mishra, A.K. & Gochhayat, P. (2010). Certain subclasses of analytic and bi-univalent functions, Applied Mathematics Letters, 23, (10), 1188-1192.
[14] Yousef, F., Frasin, B.A. & Al-hawary, T. (2018). Fekete-Szego inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials. Faculty of Sciences and Mathematics, University of Nis, Serbia, 32(9) 3229-3236.
Published
2021-02-24
How to Cite
Ayinla, R. O. (2021). Estimates of Fekete-Szego Functional of a Sub- class of Analytic and Bi-Univalent Functions by Means of Chebyshev Polynomials. Journal of Progressive Research in Mathematics, 18(1), 48-54. Retrieved from http://scitecresearch.com/journals/index.php/jprm/article/view/1979
Section
Articles