Fourier Coefficients of a Class of Eta Quotients of Weight 12 with Level 12

  • Baris Kendirli Istanbul Kultur University, Turkey
Keywords: Dedekind eta function, eta quotients, Fourier series.

Abstract

Recently, Williams and then Yao, Xia and Jin discovered explicit formulas for the coefficients of the Fourier series expansions of a class of eta quotients. Williams expressed all coefficients of 126 eta quotients in terms of σ(n),σ(n/2),σ(n/3) and σ(n/6) and Yao, Xia and Jin, following the method of proof of Williams, expressed only even coefficients of 104 eta quotients in terms of σ3(n),σ3(n/2),σ3(n/3) and σ3(n/6). Here, we will express the even Fourier coefficients of 2 eta quotients i.e., the Fourier coefficients of the sum, f(q)+f(-q), of 2 eta quotients in terms of σ5(n),σ5(n/2),σ5(n/3),σ5(n/4),σ5(n/6),σ5(n/12),σ11(n),σ11(n/2),
σ11(n/3),σ11(n/4),σ11(n/6),σ11(n/12),τ(n)(tau function),τ(n/2),τ(n/3),τ(n/4),τ(n/6),τ(n/12)
and the odd Fourier coefficients of 393 eta quotients in terms of σ5(n),σ5(n/2),σ5(n/3),σ5(n/4),σ5(n/6),σ5(n/12),σ11(n),σ11(n/2),
σ11(n/3),σ11(n/4),σ11(n/6),σ11(n/12),τ(n),τ(n/2),τ(n/3),τ(n/4),τ(n/6),τ(n/12) and f13,...,f19.

Downloads

Download data is not yet available.

References

A.Alaca, S.Alaca and K. S. Williams, On the two-dimensional theta functions of Borweins, Acta Arith. 124 (2006)

-195.

_________, Evaluation of the convolution sums = and, 3 4 =1 ml m n Adv. Theor. Appl. Math. 1(2006), 27-48.

B.Gordon, Some identities in combinatorial analysis, Quart. J. Math. Oxford Ser.12 (1961), 285-290.

B. Gordon and S. Robins, Lacunarity of Dedekind

n -products, Glasgow Math. J. 37 (1995), 1-14.

F. Diamond, J. Shurman, A First Course in Modular Forms,Springer Graduate Texts in Mathematics 228

V. G. Kac, Infinite-dimensional algebras, Dedekind's

n -function, classical Mobius function and the very strange

formula, Adv. Math. 30 (1978) 85-136.

B. Kendirli, "Evaluation of Some Convolution Sums by Quasimodular Forms", European Journal of Pure and

Applied Mathematics ISSN 13075543 Vol.8., No. 1, Jan. 2015, pp. 81-110

B. Kendirli, "Evaluation of Some Convolution Sums and Representation Numbers of Quadratic Forms of

Discriminant 135", British Journal of Mathematics and Computer Science, Vol6/6, Jan. 2015, pp. 494-531.

B. Kendirli, Evaluation of Some Convolution Sums and the Representation numbers, ArsCombinatorica Volume

CXVI, July, pp 65-91.

B. Kendirli, Cusp Forms in

79 S4 0

and the number of representations of positive integers by some direct

sum of binary quadratic forms with discriminant -79, Bulletin of the Korean Mathematical Society Vol 49/3 2012

B. Kendirli, Cusp Forms in

47 S 4 0

and the number of representations of positive integers by some direct

sum of binary quadratic forms with discriminant -47,Hindawi , International Journal of Mathematics and

Mathematical Sciences Vol 2012, 303492 10 pages

B. Kendirli, The Bases of M 71 ,

0 M 71 6 0

and the Number of Representations of Integers, Hindawi,

Mathematical Problems in Engineering Vol 2013, 695265, 34 pages

G. Kohler, Eta Products and Theta Series Identities (Springer-Verlag, Berlin, 2011).

I. G. Macdonald, Affine root systems and Dedekind's

I -function, Invent. Math. 15 (1972), 91-143.

Olivia X. M. Yao, Ernest X. W. Xia and J. Jin, Explicit Formulas for the Fourier coefficients of a class of eta

quotients, International Journal of Number Theory Vol. 9, No. 2 (2013) 487-503.

I. J. Zucker, A systematic way of converting infinite series into infinite products, J. Phys. A 20 (1987) L13-L17.

________,Further relations amongst infinite series and products:II. The evaluation of three-dimensional lattice

sums, J. Phys. A23 (1990) 117-132.

K. S. Williams, Fourier series of a class of eta quotients, Int. J. Number Theory 8 (2012), 993-1004.

Published
2015-06-07
How to Cite
Kendirli, B. (2015). Fourier Coefficients of a Class of Eta Quotients of Weight 12 with Level 12. Journal of Progressive Research in Mathematics, 4(1), 257-293. Retrieved from http://scitecresearch.com/journals/index.php/jprm/article/view/197
Section
Articles