Fourier Coefficients of a Class of Eta Quotients of Weight 12 with Level 12
Abstract
Recently, Williams and then Yao, Xia and Jin discovered explicit formulas for the coefficients of the Fourier series expansions of a class of eta quotients. Williams expressed all coefficients of 126 eta quotients in terms of σ(n),σ(n/2),σ(n/3) and σ(n/6) and Yao, Xia and Jin, following the method of proof of Williams, expressed only even coefficients of 104 eta quotients in terms of σ3(n),σ3(n/2),σ3(n/3) and σ3(n/6). Here, we will express the even Fourier coefficients of 2 eta quotients i.e., the Fourier coefficients of the sum, f(q)+f(-q), of 2 eta quotients in terms of σ5(n),σ5(n/2),σ5(n/3),σ5(n/4),σ5(n/6),σ5(n/12),σ11(n),σ11(n/2),
σ11(n/3),σ11(n/4),σ11(n/6),σ11(n/12),τ(n)(tau function),τ(n/2),τ(n/3),τ(n/4),τ(n/6),τ(n/12)
and the odd Fourier coefficients of 393 eta quotients in terms of σ5(n),σ5(n/2),σ5(n/3),σ5(n/4),σ5(n/6),σ5(n/12),σ11(n),σ11(n/2),
σ11(n/3),σ11(n/4),σ11(n/6),σ11(n/12),τ(n),τ(n/2),τ(n/3),τ(n/4),τ(n/6),τ(n/12) and f13,...,f19.
Downloads
References
A.Alaca, S.Alaca and K. S. Williams, On the two-dimensional theta functions of Borweins, Acta Arith. 124 (2006)
-195.
_________, Evaluation of the convolution sums = and, 3 4 =1 ml m n Adv. Theor. Appl. Math. 1(2006), 27-48.
B.Gordon, Some identities in combinatorial analysis, Quart. J. Math. Oxford Ser.12 (1961), 285-290.
B. Gordon and S. Robins, Lacunarity of Dedekind
n -products, Glasgow Math. J. 37 (1995), 1-14.
F. Diamond, J. Shurman, A First Course in Modular Forms,Springer Graduate Texts in Mathematics 228
V. G. Kac, Infinite-dimensional algebras, Dedekind's
n -function, classical Mobius function and the very strange
formula, Adv. Math. 30 (1978) 85-136.
B. Kendirli, "Evaluation of Some Convolution Sums by Quasimodular Forms", European Journal of Pure and
Applied Mathematics ISSN 13075543 Vol.8., No. 1, Jan. 2015, pp. 81-110
B. Kendirli, "Evaluation of Some Convolution Sums and Representation Numbers of Quadratic Forms of
Discriminant 135", British Journal of Mathematics and Computer Science, Vol6/6, Jan. 2015, pp. 494-531.
B. Kendirli, Evaluation of Some Convolution Sums and the Representation numbers, ArsCombinatorica Volume
CXVI, July, pp 65-91.
B. Kendirli, Cusp Forms in
79 S4 0
and the number of representations of positive integers by some direct
sum of binary quadratic forms with discriminant -79, Bulletin of the Korean Mathematical Society Vol 49/3 2012
B. Kendirli, Cusp Forms in
47 S 4 0
and the number of representations of positive integers by some direct
sum of binary quadratic forms with discriminant -47,Hindawi , International Journal of Mathematics and
Mathematical Sciences Vol 2012, 303492 10 pages
B. Kendirli, The Bases of M 71 ,
0 M 71 6 0
and the Number of Representations of Integers, Hindawi,
Mathematical Problems in Engineering Vol 2013, 695265, 34 pages
G. Kohler, Eta Products and Theta Series Identities (Springer-Verlag, Berlin, 2011).
I. G. Macdonald, Affine root systems and Dedekind's
I -function, Invent. Math. 15 (1972), 91-143.
Olivia X. M. Yao, Ernest X. W. Xia and J. Jin, Explicit Formulas for the Fourier coefficients of a class of eta
quotients, International Journal of Number Theory Vol. 9, No. 2 (2013) 487-503.
I. J. Zucker, A systematic way of converting infinite series into infinite products, J. Phys. A 20 (1987) L13-L17.
________,Further relations amongst infinite series and products:II. The evaluation of three-dimensional lattice
sums, J. Phys. A23 (1990) 117-132.
K. S. Williams, Fourier series of a class of eta quotients, Int. J. Number Theory 8 (2012), 993-1004.
Copyright (c) 2015 Journal of Progressive Research in Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.