On Approximation Properties of Multivariate Class of Nonlinear Singular Integral Operators

  • Gumrah Uysal Department of Computer Technologies, Karabuk University, Karabuk, Turkey
  • Vishnu Narayan Mishra Department of Mathematics, Indira Gandhi University, Lalpur, Madhya Pradesh, India
  • Ertan Ibikli Ankara University, Faculty of Science, Department of Mathematics, Ankara, Turkey
Keywords: generalized Lebesgue point; rate of convergence; Lipschitz condition; nonlinear analysis.

Abstract

In the present paper, we study the pointwise approximation of nonlinear multivariate singular integral operators having convolution type kernels of the form:
T (f; x) =
Z
D
K (t 􀀀 x; f(t)) dt; x 2 D; 2 ;
where D =
n
i=1 hai; bii is open, semi-open or closed multidimensional arbitrary
bounded box in Rn or D = Rn and is non-empty the set of non-negative
indices, at a -generalized Lebesgue point of f 2 Lp(D): Also, we investigate
the corresponding rates of convergences at this point.

Downloads

Download data is not yet available.

References

C. Bardaro, J. Musielak, G. Vinti, Approximation by nonlinear singular integral operators in some modular function spaces, Ann. Polon. Math, 63(1996), no. 2, 173-182.

C. Bardaro, J. Musielak, G. Vinti, Nonlinear Integral Operators and Applications, DeGruyter Series in Nonlinear Analysis and Applications, 9(2003), xii + 201 pp.

S. Bochner and K. Chandrasekharan, Fourier Transforms, Annals of Mathematics Studies, no. 19, Princeton University Press, Princeton, N. J. Oxford University Press, London, ix+219, 1949.

P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation, vol. I. Academic Press, Newyork, London, 1971.

A. D. Gadjiev, The order of convergence of singular integrals which depend on two parameters, Special Problems of Functional Analysis and their Appl. to the Theory of Diff. Eq. and the Theory of Func., Izdat. Akad. Nauk Azerbadazan. SSR., (1968), 40-44.

G. B. Folland, Real Analysis: Modern Techniques and Their applications (Pure and Applied Mathematics), New York, NY, USA: Wiley, 1999.

H. Karsli, Convergence and rate of convergence by nonlinear singular integral operators depending on two parameters. Appl. Anal., 85(6-7), (2006), 781-791.

H. Karsli and E. Ibikli, On convergence of convolution type singular integral operators depending on two parameters, Fasc. Math., 38(2007), 25-39.

J. Musielak, On some approximation problems in modular spaces, In Constructive Function Theory 1981, (Proc. Int. Conf., Varna, June 1-5, 1981), Publ. House Bulgarian Acad. Sci., Soa 1983, 455-461.

W. Rudin, Real and Complex Analysis, Mc-Graw Hill Book Co., London, 1987.

B. Rydzewska, Approximation des fonctions par des integrales singulieres ordinaires, Fasc. Math., 7(1973), 71-81.

C. Sadosky, Interpolation of Operators and Singular Integrals: An Introduction to Harmonic Analysis. New York ; Basel : Marcel Dekker, 1979.

E. M. Stein, Singular Integrals and Differentiability of Functions, Princeton Univ. Press, New Jersey, 1970.

T. Swiderski and E. Wachnicki, Nonlinear singular integrals depending on two parameters, Commentationes Math., 40(2000), 181{189.

R. Taberski, Singular integrals depending on two parameters, Rocznicki Polskiego to warzystwa matematycznego, Seria I. Prace matematyczne, 7(1962), 173-179.

R. Taberski, On double integrals and Fourier Series, Ann. Polon. Math. 15(1964), 97-115.

G. Uysal, M. M. Yilmaz, E. Ibikli, Approximation by Radial type multidimensional singular integral operators, Palest. J. Math., 5(2) (2016), 61-70.

Published
2018-04-04
How to Cite
Uysal, G., Narayan Mishra, V., & Ibikli, E. (2018). On Approximation Properties of Multivariate Class of Nonlinear Singular Integral Operators. Journal of Progressive Research in Mathematics, 13(2), 2273-2281. Retrieved from http://scitecresearch.com/journals/index.php/jprm/article/view/1447
Section
Articles