I (D,B)- supra pre maps via supra topological ordered spaces
Abstract
Sayed [19] defined a supra πππ-open set and studied its basic properties. In this work, we introduce various forms of supra continuous (supra open, supra closed, supra homeomorphism) maps in supra topological ordered spaces by using the notions of supra πππ-open sets and increasing (decreasing, balancing) sets. We illustrate the relationships among these maps with the help of examples. Moreover, we investigate under what conditions these maps preserve some separation axioms between supra topological ordered spaces.
Downloads
References
[2] M. Abo-elhamayel and T. M. Al-shami, Supra homeomorphism in supra topological ordered spaces, Facta Universitatis, Series: Mathematics and Informatics, 31 (5) (2016) 1091-1106.
[3] T. M. Al-shami, Some results related to supra topological spaces, Journal of Advanced Studies in Topology, 7 (4) (2016) 283-294.
[4] T. M. Al-shami, Utilizing supra πΌ-open sets to generate new types of supra compact and supra Lindelof spaces, FactaUniversitatis, Series: Mathematics and Informatics, 32 (1) (2017) 151-162.
[5] T. M. Al-shami, Somewhere dense sets and ππ1-spaces, Punjab University Journal of Mathematics, 49 (2)
(2017) 101-111.
[6] T. M. Al-shami, Supra π½-bicontinuous maps via topological ordered spaces, Mathematical Sciences Letters, 6 (3) (2017) 239-247.
[7] S. D. Arya and K. Gupta, New separation axioms in topological ordered spaces, Indian Journal Pure and Applied Mathematics, 22 (1991) 461-468.
[8] P. Das, Separation axioms in ordered spaces, Soochow Journal of Mathematics, 30 (4) (2004) 447-454.
[9] R. Devi, S. Sampathkumar and M. Caldas, OnπΌ-open sets and πΌ-continuous maps, General Mathematics, 16(2008) 77-84.
[10] M. E. El-Shafei, M. Abo-elhamayel and T. M. Al-shami, On supra R-open sets and some applications on topological spaces, Journal of Progressive Research in Mathematics, 8 (2) (2016) 1237-1248.
[11] M. E. El-Shafei, M. Abo-elhamayel and T. M. Al-shami, Generating ordered maps via supra topological ordered spaces, International Journal of Modern Mathematical Sciences, 15 (3) (2017) 339-357.
[12] M. E. El-Shafei, M. Abo-elhamayel and T. M. Al-shami, Strong separation axioms in supra topological ordered spaces, Mathematical Sciences Letters, 6 (3) (2017) 271-277.
[13] M. K. R. S. V. Kumar, Homeomorphism in topological ordered spaces, ActaCiencia Indian, XXVIII(M)(1)(2012) 67-76.
[14] D. S. Leela and G. Balasubramanian, New separation axioms in ordered topological spaces, Indian Journal Pure and Applied Mathematics, 33 (2002) 1011-1016.
[15] N. Levine, Semi-open sets and semi-continuity in topological spaces, American Mathematical Society, 70 (1963) 36-41.
[16] A. S. Mashhour, A. A. Allam, F. S. Mahmoud and F. H. Khedr, On supra topological spaces, Indian Journal Pure and Applied Mathematics, 14 (4) (1983) 502-510.
[17] S. D. McCartan, Separation axioms for topological ordered spaces, Mathematical Proceedings of the Cambridge Philosophical Society, 64 (1986) 965-973.
[18] L. Nachbin, Topology and ordered, D. Van Nostrand Inc. Princeton, New Jersey, (1965).
[19] K. K. Rao and R. Chudamani, πππ-homeomorphism in topological ordered spaces, International Journal of Mathematical Sciences, Technology and Humanities, 52 (2012) 541-560.
[20] O. R. Sayed, Supra πππ-open sets and supra πππ-continuous on topological spaces, Series Mathematics and Information, 20 (2010) 79-88.
Copyright (c) 2017 Journal of Progressive Research in Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.