On Weekly Berwald Finsler special (α, β) - metric
Abstract
In this paper we study the special (α, β)-metric F = (α2/α-β)+ β on a manifold M. We prove that F is of scalar flag curvature and isotropic Scurvature if and only if it is isotropic Berwald metric with almost isotropic flag curvature.
Downloads
References
S. Basco and M. Matsumoto, On Finsler spaces of Douglas type, A gen- eralization of notion of Berwald space, Publ. Math. Debrecen. 51(1997), 385-406.
D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemann-Finsler Geometry, Springer-Verlag, 2000.
X. Chun-Huan and X. Cheng, On a class of weakly-Berwald (α, β)- metrics, J. Math. Res. Expos. 29(2009), 227-236.
X. Cheng and Z. Shen, Randers metric with special curvature properties, Osaka. J. Math. 40(2003), 87-101.
X. Cheng and Z. Shen, A class of Finsler metrics with isotropic S- curvature, Israel. J. Math. 169(2009), 317-340.
X. Chen and Z. Shen, On Douglas metrics, Publ. Math. Debrecen. 66(2005), 503-512.
X. Cheng, H. Wang and M. Wang, (α, β)-metrics with relatively isotropic mean Landsberg curvature, Publ. Math. Debrecen. 72(2008), 475-485.
N. Cui, On the S-curvature of some (α, β)-metrics, Acta. Math. Scien- tia, Series: A. 26(7) (2006), 1047-1056.
I.Y. Lee and M.H. Lee, On weakly-Berwald spaces of special (α, β)- metrics, Bull. Korean Math. Soc. 43(2) (2006), 425-441.
M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep. Math. Phys. 31(1992), 43-84.
S. K. Narasimhamurthy, A.R. Kavyashree and Y. Mallikarjun, Curvature properties of homogeneous matsumato metric, in press.
S. K. Narasimhamurthy, A.R. Kavyashree, Ajith and Y. Mallikarjun, On a Class of Weakly Berwald (α, β)-metrics of Scalar flag curvature, in press.
B. Najafi, Z. Shen and A. Tayebi , Finsler metrics of scalar flag curvature with special non-Riemannian curvature properties, Geom. Dedicata. 131(2008), 87-97.
H. S. Park and E. S. Choi, On a Finsler spaces with a special (α, β)- metric, Tensor, N. S. 56(1995),142-148.
H. S. Park and E. S. Choi, Finsler spaces with an approximate Mat- sumoto metric of Douglas type, Comm. Korean. Math. Soc. 14(1999), 535-544.
H. S. Park and E. S. Choi, Finsler spaces with the second approximate Matsumoto metric, Bull. Korean. Math. Soc. 39(1) (2002), 153-163.
H. S. Park, I. Y. Lee and C. K. Park, Finsler space with the gen- eral approximate Matsumoto metric, Indian J. Pure. Appl. Math. 34(1) (2002), 59-77.
H. S. Park, I.Y. Lee, H. Y. Park and B. D. Kim, Projectively flat Finsler space with an approximate Matsumoto metric, Comm. Korean. Math. Soc. 18(2003), 501-513.
Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, Dordrecht, 2001.
A. Tayebi and B. Najafi, On isotropic Berwald metrics, Ann. Polon. Math. 103(2012), 109-121.
A. Tayebi, E. Peyghan and H. Sadeghi, On Matsumoto-type Finsler metrics, Nonlinear Analysis: RWA. 13(2012), 2556-2561.
A. Tayebi, E. Peyghan and H. Sadeghi, On Matsumoto-type Finsler metrics, Nonlinear Analysis: RWA. 13(2012), 2556-2561.
Copyright (c) 2017 Journal of Progressive Research in Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.