Supplement-Duo Modules
Abstract
In this note we consider a generalization of the notion of duo modules namely supplement duo modules. where an R module M is called a supplement duo module if every supplement submodule of M is a fully invariant. Many results about this concept are given. Also we study when the direct sum of supplement duo modules is supplement duo,and relationships between a supplement dou module and other modules.
Downloads
References
A.C.Özcan, A.Harmanci, Duo Modules, Glasgow Math.J.48 (2006) 533-545.
J. Clark, D.V. Huynh, When self-injective semi perfect ring Quasi-frobenius Journal of Alg.165(1994),531-542.
A.C. Ozcan , Modules with small cyclic submodules in their injective hulls, Comm. Alg , 30(4)2002,1575-1589.
M. Harade , Non-small modules and non- cosmall modules, In Ring Theory Proceedings of the 1978 Antwerp Conference, F. Van Oystaeyened .New York: Marcel Dekker.
Anne Koehler, Quasi-Projective and Quasi-Injective Modules, Pacific Journal of Mathematics, 1971, Vol.36, No.3.
M.S. Abas, On Fully Stable Modules, Ph.D. Thesis, College of Science, University of Baghdad, 1991.
Manabu Harada, On Modules with Extending Properties, Harada M.Osaka J.Math., (1982), Vol.19, pp.203-215.
Saad H. Mohamed, Bruno J. Muller, Continuous and Discrete Modules, Combridge University Press, New York, Port Chester Melbourne Sydney, (1990).
Sahira M. Yaseen ,Mustafa M.T., Supplement Extending Modules,Iraqi journal of science ,2015 no.56,pp.2341-2345.
K.R.Goodearl, Ring Theory, Non Singular Rings and Modules, Marcel Dekker, Inc. New York and Basel, (1976).
T.Y.Lam, Lectures on Modules and Rings, Berkeley, California Springer, 1998.
Copyright (c) 2017 Journal of Progressive Research in Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.