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Abstract 
 In this paper, we present approximate analytical solution of the time-fractional biological population equation 
using the fractional power series method (FPSM). The fractional derivatives are described in the Caputo sense. 
Some examples are given and the results are compared with the exact solutions.The results reveal that FPSM is 
very effective simple and efficient technique to handle fractional differential equations.  
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1   Introduction 

 

Fractional differential equations (FDEs) have gained importance and popularity during the past three decades or 

so, mainly due to its demonstrated applications in numerous seemingly diverse fields of science and 

engineering. FDEs are also used in modeling of many chemical processes, mathematical biology and many 

other problems in physics and engineering [8]. Unfortunately, most of FDEs do not have exact analytical 

solutions;therefore considerable heed has been focused on the approximate and numerical solutions of these 

equations. In recent years, many methods have been developed for constructing approximate analytical 

solutions such as, Adomian decomposition method [10] homotopy analysis method, homotopy perturbation 

method and others ([10]-[12]). Recently, published a very interesting work whereby the approximate analytical 

solution of some FDEs was given using a new method called fractional power series method([5],[13]). It was 

shown that this new method is very efficient, Fractional power series method is an important method to solve 

mathematical problems.  

In this paper, we consider the nonlinear fractional biological population model in the form [9] 

 

 

2 2
2 2

2 2
= ( ) ( ) ( ),0 < 1, > 0, ,

u
u u f u t x y

t x y






  
   

  
 (1) 

 with the initial condition ( , ,0) =u x y  g ( , )x y , where ( , , )u x y t denotes the population density and f 

represents the population supply due to birth and death,   is a parameter describing the order of the fractional 

derivative. Eq.(1) describes the nonlinear of biologic equation ([2], [4], [5]).  

The paper is organized as follows: In section 2, we provide the Basic definitions fractional calculus In addition 

property. which will be used throughout the paper. Section 3, Application models of fractional biological 

equation. Sections 4,Conclusion. 
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2   Basic definitions 

 
2.1  Definition  ([13]) 

 

The fractional derivative of ( )f x  in caputo sense is defined as 

 

 
1 ( )

0

1
( ) = ( ) ( ) ,

( )

x

m mD f x x s f s ds
m

 



 
 

 

 

2.2  Definition  ( [5] ) 

 

   A power series representation of the form 

 

 
2

0 0 1 0 2 0

=0

( ) = ( ) ( ) ...,n

n

n

c t t c c t t c t t  


       (2) 

 

 where 0 1< ,m m m    N


and  t > t 0  is called a fractional power series (FPS) about t 0  ,where t is a 

varible and C n  are the coeffients of the series.      

 In addtion, we also need the following property: 

 

2.3  Theorem 1([13]) 

 

Suppose that the FPS 
=0

n

n

n

c t 


  has radius of convergence > 0. ( )R f t  is a function defined by ( )f t  =

=0

n

n

n

c t 


 on 0 < ,t R then for 1< ,m m   and  0 < ,t R we have: 

 

 
( 1)

=1

( 1)
( ) =

(( 1) 1)

n

n

n

n
D f t c t

n

 




 

  
  (3) 

 

3   Application models of fractional biological equation 
 

In this section, the applicability of FPSM shall be demonstrated by test examples 

 

3.1   Example :[9] 

 

We consider the time- fractional biological equation in the form 

 

 

2 2 2 2

2 2
= 0 < 1

u u u
ku

t x y






  
  

  
 (4) 

 

subject to the initial condition ( , , ) = .u x y o xy  

If we put =1,  we obtain the exact solution ( , , ) = .ntu x y t e xy  

 To apply FPSM , we suppose that the solution of (4) takes the form 
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0

( , , ) = ( , ) n

n

n

u x y t u x y t 




  (5) 

 
2

1 2= ( , ) ( , ) ( , ) ...ou x y u x y t u x y t     

 

by theorem 

 

 
( 1)

0

( 1)
= ( , )

(( 1) 1)

n

t n

n

n
D u u x y t

n

 








 

  
  (6) 

 
2 2 2 2

0 0 1 0 2 1= 2 (2 ) ...u u u u t u u u t      

 

( 
2 2

0 0 0 1 0 1 0 2 0 2 1 1) = 2 2( ) 2( 2 ) ...x x x x x x xu u u u u u u t u u u u u u t        

 

 

 
2 2

0 0 0 0 1 0 1 0 1( ) = 2( ( ) ) 2( 2 )xx xx x xx x x xxu u u u u u u u u u t      (7) 

 
2 2

0 2 0 2 0 2 1 1 12( 2 2( ( ) ) ...xx x x xx xx xu u u u u u u u u t        

 

 ( 
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0 0 0 1 0 1 0 2 0 2 1) = 2 2( ) 2( 2 ) ...y y y y y y yu u u u u u u t u u u u u u t        

 

 
2 2

0 0 0 0 1 0 1 0 1( ) = 2( ( ) ) 2( 2 ) 8yy yy y yy y y yyu u u u u u u u u u t a     (8) 

 
2 2

0 2 0 2 0 2 1 1 12( 2 2( ( ) ) ..yy y y yy yy yu u u u u u u u u t        

 

 

 substituting (5), (6) ,(7), (8) into (4) and comparing the cofficients of t   

( 1)

1

( 1)
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(( 1) 1)
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n
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n
u x y t
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2

0 0 0 0 1 0 1 0 1[2( ( ) ) 2( 2 )xx x xx x x xxu u u u u u u u u t      

 
2 2

0 2 0 2 0 2 1 1 12( 2 2( ( ) ) ...]xx x x xx xx xu u u u u u u u u t        

 
2

0 0 0 0 1 0 1 0 1[2( ( ) ) 2( 2 )yy y yy y y yyu u u u u u u u u t       

 
2

0 1 0 1 0 12( 2 ) ...]yy y y yyu u u u u u t      

 
2

1 1[ ..]ok u u t u t      

 

using initial condition ( , , ) =u x y o xy  

we have 0( , ) =u x y xy  

Next we determine the ( =1,2,...).nu n  

 
2 2

1 0 0 0 0 0 0( 1) = 2( ( ) ) 2( ( ) )xx x yy y ou u u u u u u ku       (9) 

 

 and 

 

 2 0 1 0 1 0 1 0 1 0 1 0 1 1

(2 1)
= 2( 2 ) 2( 2 )

( 1)
xx x x xx yy y y yyu u u u u u u u u u u u u ku





 
     

 
 (10) 
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therefore we obtain the approximate solution of equation (4) 

2

1 2( , , ) = ( , ) ( , ) ( , ) ..ou x y t u x y u x y t u x y t     

For example , if    0( , ) =u x y xy  then form (9) and (10) we get 

1( , ) = ,
( 1)

k xy
u x y

 
 

2

2 ( , ) =
(2 1)

k xy
u x y

 
 

 

then ( , ) =
( 1)

n

n

k xy
u x y

n 
 

0 0 0

( )
( , , ) = ( , ) = = = ( ),

( 1) ( 1)

n n
n n

n

n n n

k xy kt
u x y t u x y t t xy xy E kt

n n


  


 

  

     
    

where ( )E kt   is Mittag-Leffler function, which is an exact solution to the standard form biological 

population equation and which is in full agreement with the results obtained by ([1],[4],[5],[9]) . 

 

 

 
Figure 1. The behavior of the approximate solution at =1, =1.5,k t =1.  
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Figure 2. The behavior of the approximate solution at = 2.5, =1.5,k t = 0.85.  

 

 
Figure 3. The behavior of the approximate solution at = 3.5, = 0.5,k t = 0.5.  

where in Figure 1-3, we presented the behavior of the approximate solution with different values of   (

=1,0.85  and 0.5 , respectively) and different values of r . from these fpgures we can see that the obtained 

solutions are in full agreement with the results obtained by ([1],[4],[5],[9]). 
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3.2   Example :[9] 

 

we consider the time- fractional biological equation in the form 

 

 

2 2 2 2

2 2
= (1 ) = = =1 0 < 1a bu u u

ku ru a b k
t x y






  
   

  
 (11) 

subject to the initial condition 
( )

8( , , ) =

r
x y

u x y o e


 

To apply FPSM, we suppose that the solution of (11) takes the form 

 
0

( , , ) = ( , ) n

n

n

u x y t u x y t 




  (12) 

            
2

1 2= ( , ) ( , ) ( , ) ...ou x y u x y t u x y t     

by theorem  
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0
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= ( , )

(( 1) 1)

n

t n

n

n
D u u x y t

n

 








 

  
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2 2 2 2

0 0 1 0 2 1= 2 (2 ) ...u u u u t u u u t      (14) 

( 
2 2

0 0 0 1 0 1 0 2 0 2 1 1) = 2 2( ) 2( 2 ) ...x x x x x x xu u u u u u u t u u u u u u t        

 
2 2

0 0 0 0 1 0 1 0 1( ) = 2( ( ) ) 2( 2 )xx xx x xx x x xxu u u u u u u u u u t      (15) 

 
2 2

0 2 0 2 0 2 1 1 12( 2 2( ( ) ) ...xx x x xx xx xu u u u u u u u u t        

 ( 
2 2

0 0 0 1 0 1 0 2 0 2 1) = 2 2( ) 2( 2 ) ...y y y y y y yu u u u u u u t u u u u u u t        

 

 
2 2

0 0 0 0 1 0 1 0 1( ) = 2( ( ) ) 2( 2 )yy yy y yy y y yyu u u u u u u u u u t      (16) 

 
2 2

0 2 0 2 0 2 1 1 12( 2 2( ( ) ) ...yy y y yy yy yu u u u u u u u u t        

 

substituting (12), (13), (14) and (15), (16) into (11) and comparing the cofficients of t   

( 1)

1

( 1)
( , ) =

(( 1) 1)

n

n

n

n
u x y t

n










 

  
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2

0 0 0 0 1 0 1 0 1[2( ( ) ) 2( 2 )xx x xx x x xxu u u u u u u u u t      

                       
2 2

0 2 0 2 0 2 1 1 12( 2 2( ( ) ) ...]xx x x xx xx xu u u u u u u u u t        

                      
2

0 0 0[2( ( ) )yy yu u u   

                    
2
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2

1 1[ ...]ou u t u t      

                           
2 2 2

0 0 1 0 2 1( 2 (2 ) ...)r u u u t u u u t       

 

using initial condition 
( )

8( , , ) = .

r
x y

u x y o e

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we have  
( )

8
0 ( , ) =

r
x y

u x y e


 

Next we determine the nu ( =1,2,...).n  

 
2 2 2

1 0 0 0 0 0 0 0( 1) = 2( ( ) ) 2( ( ) )xx x yy y ou u u u u u u u ru        (17) 

and 
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(2 1)
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



 
      

 
 (18) 

 

therefore we obtain the approximate solution of equation (11) 

2

1 2( , , ) = ( , ) ( , ) ( , ) ..ou x y t u x y u x y t u x y t     

For example, if 0( , ) =u x y
( )

8

r
x y

e


 then form (17) and (18) we get 
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

 
 

then 
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8
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r
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8 8

=0 =0
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r rn
x y x y

n

n
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t
u x y t u x y t e e E t

n


 




  

 
   

where ( )E kt   is Mittag-Leffler function, which is an exact solution to the standard form biological 

population equation and which is in full agreement with the results obtained by([1],[4],[5],[9]). 
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Figure 4. The behavior of the approximate solution at =1, = 2,r t =1.  

 
Figure 5. The behavior of the approximate solution at = 3, = 2,r t = 0.85.  
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Figure 6. The behavior of the approximate solution at = 5, =1,r t = 0.5.  

where in Figure 4-6, we presented the behavior of the approximate solution with different values of   (

=1,0.85  and 0.5 , respectively) and different values of r . from these fpgures we can see that the obtained 

solutions are in full agreement with the results obtained by ([1],[4],[5],[9]). 

 

3.3  Example :[14] 
 

We consider the time- fractional biological equation in the form 

 

 

2 2 2 2

2 2
= 0 < 1

u u u
u

t x y






  
  

  
 (19) 

 

subject to the initial condition ( , , ) = sin sinh .u x y o x y  

To apply FPSM  ,we suppose that the solution of (19) takes the form 

 
0

( , , ) = ( , ) n

n

n

u x y t u x y t 




  (20) 

 
2

1 2= ( , ) ( , ) ( , ) ...ou x y u x y t u x y t     

 

by theorem 

 

 
( 1)

0

( 1)
= ( , )

(( 1) 1)

n

t n

n

n
D u u x y t

n

 








 
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2 2 2 2

0 0 1 0 2 1= 2 (2 ) ...u u u u t u u u t      (22) 
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2 2

0 0 0 1 0 1 0 2 0 2 1 1) = 2 2( ) 2( 2 ) ...x x x x x x xu u u u u u u t u u u u u u t        

 

 

 
2 2

0 0 0 0 1 0 1 0 1( ) = 2( ( ) ) 2( 2 )xx xx x xx x x xxu u u u u u u u u u t      (23) 

 
2 2

0 2 0 2 0 2 1 1 12( 2 2( ( ) ) ...xx x x xx xx xu u u u u u u u u t        
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2 2

0 0 0 1 0 1 0 2 0 2 1) = 2 2( ) 2( 2 ) ...y y y y y y yu u u u u u u t u u u u u u t        
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0 0 0 0 1 0 1 0 1( ) = 2( ( ) ) 2( 2 )yy yy y yy y y yyu u u u u u u u u u t      (24) 

 
2 2
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substituting (20), (21), (22) and (23), (24) into (19) and comparing the cofficients of t   
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( 1)
( , ) =

(( 1) 1)
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2

0 0 0 0 1 0 1 0 1[2( ( ) ) 2( 2 )xx x xx x x xxu u u u u u u u u t      

 
2 2

0 2 0 2 0 2 1 1 12( 2 2( ( ) ) ...]xx x x xx xx xu u u u u u u u u t        

 
2
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2
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2

1 1[ ...]ou u t u t      

 

using initial condition ( , , ) = sin sinh .u x y o x y  

 we have   0( , ) = s i n s i nh .u x y x y 

Next we determine the nu ( =1,2,...).n  

 

 
2 2

1 0 0 0 0 0 0( 1) = 2( ( ) ) 2( ( ) )xx x yy y ou u u u u u u u       (25) 

 

and 

 

 2 0 1 0 1 0 1 0 1 0 1 0 1 1

(2 1)
= 2( 2 ) 2( 2 )

( 1)
xx x x xx yy y y yyu u u u u u u u u u u u u u





 
     

 
 (26) 

therefore we obtain the approximate solution of equation(19) 

2

1 2( , , ) = ( , ) ( , ) ( , ) ..ou x y t u x y u x y t u x y t     

For example , if 0( , ) =u x y sin sinh .x y  then form (25) and (26) we get 
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1

sin sinh
( , ) = ,

( 1)

x y
u x y

 
 

2

sin sinh
( , ) =

(2 1)

x y
u x y
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then 
sin sinh

( , ) =
( 1)

n

x y
u x y

n 
 

0 0

( , , ) = ( , ) = sin sinh = sin sinh ( )
( 1)

n
n

n

n n

t
u x y t u x y t x y x y E t

n


 




 

   
  . 

 

4   Conclusion. 
 

In this paper, the fractional power series method has been successfully applied to study the time-fractional 

biological equation.The results show that FPSM is an efficient and easy- to- use technique for finding exact and 

approximate solutions for nonlinear fractional partial differential equations.The obtained approximate solutions 

using the suggested method is in excellent agreement with the exact solution and show that these approaches can 

be solved the problem effectively and illustrates the validity and the great potential of the proposed technique. 
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