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Abstract. 
 
We discuss an algorithm with a simplistic approach to solving systems of linear equations arising from the 

application of real-valued vector space ideas to the computation of the large powers of square matrices.  
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1. Introduction 

Large powers of matrices are commonly applied to many areas such as graph theory models and 

population prediction models etc. So far, the calculation of powers of matrices however requires 

computationally taxable algorithms that need and require necessary number of eigenvalues of 

matrices for diagonalization [4], or algorithms that need to apply computer-based memory-

consuming recursive steps [2,3]. In this article, we derive a simple approach of solving systems of 

linear equations in order to obtain the large powers of square matrices with very little memory 

usage. Our approach (we named “Augmented Approach”) makes use of the division algorithm over 

the ring of polynomials [1], and it does not require any recursive process or the computation of the 

eigenvalues of matrices. 

2. Vector Space Ideas  

Using the vector space structure of the set of polynomials of degree m, Pm, over the field of Real 

numbers, one writes any polynomial of degree m (or less), G(x)=
m

i

i xz
0

, applying the division 

algorithm using a basis of the vector space [1] as: 

  G(x)= 
m

i

i xz
0


1

0

n
i

i xa +
nm

i

i Fxb
0

  where F(x)= 
n

i

i xy
0

for n≤m (1) 
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Here, {1, x, x
2
, …,x

n-1
, F, xF, x

2
F,…,x

m-n
F} is the basis of Pm, used in (1), which guarantees a unique 

linear combination of the basis vectors resulting in G(x) [1]. 

Solving equation (1) for the unknowns bi and ai leads to the recognition of two separate systems of 

linear equations. One of the two systems contains equations with only the unknowns bi, and the 

other includes equations with each having single unknown, ai.  

Equations of the first system are obtained by comparing the coefficients of the terms x
m-k

. These 

coefficients form a ((m-n)+1)x((m-n)+2) system of linear equations(Here, we set yɟ=0 when ɟ<0): 

km

k

i

iniknm zyb 



 
0

, k=0,…,m-n   (2) 

It is easy to verify that (2) gives the coefficients of x
m-k

: iknmb   is the coefficient of Fx iknm   , 

and iny   is the coefficient of the term inx  in F. Thus, (2) picks the coefficient of the term Fx iknm  , 

and matches with the coefficient of inx   making sure the combined power of x is adding upto the 

power m-k. For instance, for the largest possible power m of x, equation in (2) considers k=0, and 

picks the coefficient nmb   of x
m-n

F with the highest power, and pairs it with the coefficient ny of x
n
 in 

F with the highest power, which are the only combinations adding upto the largest power x
m
.  In 

short, (2) considers the coefficients of x ranging from n to m.  

An interesting result emerges when considering the augmented matrix of the system in (2). One 

obtains a nicely patterned ((m-n)+1)x((m-n)+2) triangular matrix seen in (3): 
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                                         (3) 

 

In light of the triangular aspect of the matrix in (3), readers may agree that solving the system in (2) 

requires only the basic back substitution technique. Also it is easy to verify that this system has a 

unique solution whenever 0ny . 
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After obtaining the values of the unknowns, bi, it is not hard to evaluate the values of ai. All one 

needs is to substitute bi values to the single unknown equations given in (4) below, and apply basic 

arithmetic. The values of ai are in turn forming the remainder polynomial in the division algorithm 

(1). 

It can easily be verified that the equations in (4) are obtained from comparing the coefficients of x
i
 

where the index i ranges from 0 to n-1: 

                        
ii za  -





i

k

kki yb
0

, i=0,…,n-1                                                                                (4) 

We should note here that equations in (2) could also be obtained from the expression in (4) by 

extending the values of the index i from n-1 tom, and adding the following two conditions: bt=0 if 

t>m-n & ys=0 if s>n. 

Example: 

Let us consider a polynomial F with degree 2, and a polynomial G with degree 5. Then,  

 F(x)=


2

0i

i

i xy and G(x)=


5

0i

i

i xz . Using the equation in (1), we get: 

      
FxbFxbxFbFbxaaxzxzxzxzxzz 3

3

2

21010

5

5

4

4

3

3

2

210 
                

      (5) 

Solving (5) via the comparison of the coefficients of x
k
, k=0, …,m, we get the values of the 

unknowns bi and ai. 

               Equations with unknowns ai: 

o Comparing the constant terms in (5) gives the equation:  0000 ybza  . 

This further verifies the equation in (4) for i = 0.  

o Comparing the coefficients of the x-terms in (5) gives the equation: 

011011 ybybza  ;  

This verifies the equation in (4) for i=1. 

Equations with Unknowns bi: 

o Comparing the coefficients of the x
2
-terms in (5) gives the equation:  

0211202 ybybybz   ;  
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This time, the formula in (2) can be verified by setting k=m-n=3:   

35

3

0

2325 



  zyb
i

ii
.Next, expanding out the summation gives: 

213021120 zybybybyb   .  

 Finally, setting y-1=0, gives the linear equation: 2021120 zybybyb  . 

o Comparing the coefficients of the x
3
-terms in (5) gives the equation:  

0312213 ybybybz  . 

Again, one can easily verify the formula in (2) by setting k=2. 

o Comparing the coefficients of the x
4
-terms in (5) gives the equation:  

13224 ybybz  .  

The same equation emerging from the expression in (2) can be verified by setting 

k=1. 

o Comparing the coefficients of the x
5
-terms in (5) gives the equation: 235 ybz  .  

One can easily verify (2) setting k=0. 

Notice that the coefficients of x
k
, k=2,3,4,5 forms a 4x5 linear system containing only the 

unknowns, bi, i=0, 1,2,3. Furthermore, its augmented matrix is a 4x5 triangular matrix with a nice 

pattern as seen in (6). The pattern emerged in (6) is also in agreement with the matrix form given in 

(3). 
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                                                                 (6) 

The triangular and easily recognized pattern in (6) would make it easier to input these matrices into 

computer algorithms, and furthermore it would be straightforward for the computer-based programs 

to solve the systems easily simply by applying basic back-substitution techniques thus using 

drastically less memory than memory used with many of the existing approaches such as eigenvalue 

approach to diagonalizing matrices [4], and recursive approach to obtaining remainder polynomials 

in division algorithms [2,3]. 
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3. Computing A
m

 

In fact, the pattern observed in the matrix (3) has implications for the calculation of higher powers 

of matrices. It has been known that the Division Algorithm and Cayley-Hamilton Theorem provide 

means to be able to calculate a large power of a square matrix by evaluating a remainder 

polynomial, obtained via division algorithm, for the matrix via a recursive process [2, 3]. In this 

case, F polynomial in the equation (1) takes the role of the characteristic polynomial of a square 

matrix, and the polynomial G considers only the x
m
-type polynomials. The recursive process 

however can be memory consuming for computer-based algorithms to compute large values of the 

powers of remainder polynomials. Our Augmented Approach drastically cuts down the processes of 

finding a remainder polynomial thus provides a more effective means to obtain a remainder 

polynomial and as a result more efficient calculation of A
m

 for the large values of m. 

3.1 Augmented Approach  

Our approach gives the nicely pattern triangular augmented matrix below in (7) obtained by 

considering the characteristic polynomial, F, of an nxn matrix, and applying the division algorithm 

(1) to the characteristic polynomial and the polynomial G(x) = x
m
. Moreover, since we have 1ny  

in the characteristic polynomial of any square matrix, the linear system represented by the matrix in 

(7) always has a unique solution. 
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Example: 

Let’s now calculate A
6
 using the Augmented Approach where A=

















400

230

012

.  Its characteristic 

polynomial is F(x)=24 − 26𝑥 + 9𝑥2 − 𝑥3. Thus, for this example, the augmented matrix in (7) 

becomes a 4x5 triangular matrix seen in (8) representing the linear system obtained by applying the 

equation in (1): 
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0242691

026910

09100

11000

                                                                     (8) 

 

The row reduced echelon form of the matrix in (8) or solving the system using back-substitution 

beginning with the top row in (8), -b3=1, gives the values: 
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Using these values, we easily evaluate the equations in (4) thus obtaining the remainder 

polynomial: 

R(x)=6840-6090x+1351x
2
 

Now, we are ready to compute A
6
:   

A
6
=R(A)= 6840I-6090A+1351A

2
 =

















409600

67347290

270266564

. 

As a final remark regarding the higher powers of A in the example above, since y values are the 

same, the augmented matrix for higher powers will be a spare matrix with many zeros thus 

requiring about the same number of steps as the lower powers to calculate A
m
. As an example, for 

A
100

, the augmented matrix would be a 98x99 triangular matrix, seen in (9),with only non-zero 

entries coming from the values of yn of the characteristic polynomial Fof A. 
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                                                   (9) 

 

Notice that using our augmented matrix approach we directly obtained the coefficients of the 

remainder polynomial R for the calculation of A
6
 by simply solving a single linear system. That is, 

we did not need to compute the coefficients of the remainder polynomials for the earlier degrees, 

A
3
, A

4
,and A

5
. An already existing recursive approach derived from the division algorithm however 

requires the coefficients of the earlier remainder polynomials with lesser degrees calculated to be 

able to identify the coefficients of the remainder polynomial for the desired degree hence requiring 

a recursive process [2, 3].  
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