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1. Introduction 

We ask that authors follow simple guidelines. In essence, we ask you to make your paper look exactly like this document. 

A sequence  na of positive numbers is said to be almost increasing if there exists a positive sequence  nb  and two 

positive constants BA  and such that 

 (1.1)                                         , for all  .n n nAb a Bb n N    

          It is said to be quasi-  -power increasing, if there exists a constant K  depending upon   with  1K  such that 

(1.2)                                                 mn amanK   , 

for  all mn .Particularly,  if 0 , then  na is a quasi-increasing sequence. It is clear that for any non-

negative  ,  every almost increasing sequence is a quasi-  -power increasing sequence. But the converse is not true 

in general, as  n is quasi-  -power increasing but not almost increasing. 

          Let  nff   be a positive sequence of numbers. Then the positive sequence  na  is said to be quasi- f -

power increasing, if there exists a constant K  depending upon f  with 1K such that 
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(1.3)                                                        
mmnn afafK   

for  .1 mn  Clearly, if  na is a quasi- f -power increasing sequence, then the  n na f  is a quasi- increasing 

sequence. 

         Let  n   be a positive sequence of numbers. Then the positive sequence  na  is said to be  -quasi 

monotone , 0, 0n na a  ultimately and n nd    , where  1n n nd d d     . 

              Let  na be an infinite series with sequence of partial sums  ns . Let  np  be a sequence of positive 

numbers such that  

                                                     


npP
n

n as,
0

  . 

 Then the sequence-to-sequence transformation 

(1.4)                               
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defines the  npN , - mean of the sequence  ns  generated by the sequence of coefficients  np . The series  

 na is said to be summable , , 1N p k
n k

  , if 

(1.5)                                         .1
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The series   na is said to be summable ,0,1,;,   kpN
k

n  if 

(1.6)                                          .1
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The series   na is said to be summable ,0,1,)(,,   kpN
knn

 if 

(1.7)                                   .1
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  For any real number
,
 the series 

na  is said to be summable by the summabilty method 

,0,1,),(,,   kpN
knn ,

  if      



                                                              Journal of Progressive Research in Mathematics(JPRM)                                                                                                                                                                 

ISSN: 2395-0218     

 
Volume 10, Issue 2 available at www.scitecresearch.com/journals/index.php/jprm                                                                1462|                

 

(1.8)   
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For 1
,
 the summability method ,0,1,),(,,   kpN

knn ,
 reduces to the method 

,0,1,)(,,   kpN
knn    

 

2. Known Theorems 

 Dealing with  quasi- f  
- power increasing sequence, Palo et al[4] prove the following theorem. 

2.1. Theorem 

Let    nnff n log)(   be a sequence and  nX be a quasi- f -power sequence.  

Let  n  a sequence of constants such that   

(2.1.1)    nasn ,0 , 

(2.1.2)    





 n

n
nnX 

1

 
 

(2.1.3)   )1(OX nn 
,
 

(2.1.4)    
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(2.1.5)    
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(2.1.6)    
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 ,

 

where  nt  is the n th  1,C mean of the sequence  nan
.
. 

Then the series  nna  is summable .0,1,)(,,   kpN
knn

 

Dealing with quasi- - quasi monotone sequence, Sarangi et al. [4] Proved the following theorem: 

2.2. Theorem 

Let    nnff n log)(   be a sequence and  nX be a quasi- f -power sequence. Suppose also that there 

exists a sequence of numbers  nA  such that it is  quasi – monotone with  

(2.2.1)     nn Xn   

(2.2.2)    nnA     for all n . 

Let  n  a sequence of constants such that   
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(2.2.3)     nasn ,0 , 

 (2.2.4)    )1(OX nn  , 

and 

(2.2.5)                                   nn A   for all  n . 

     Then the series  nna  is summable  , ; , , 1, 0.n
k

N p k   
 
, if 

 (2.2.6)    
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(2.2.7)    
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(2.2.8)    

 

 
1 1

1
1

k k k k
m

nn
mk

n n n

tP
O X

p nX

     




 
 

 
 , 

where  nt  is the n th  1,C mean of the sequence  nan .  

               However, extending to summability method ,0,1,),(,,   kpN
knn

 in this paper, we prove the 

following theorem. 

3.  Theorem 

Let    nnff n log)(   be a sequence and  nX be a quasi- f -power sequence. Suppose also that there 

exists a sequence of numbers  nA  such that it is  quasi – monotone with  

(3.1)     nn Xn   

(3.2)    nnA     for all n . 

Let  n  a sequence of constants such that   

(3.3)     nasn ,0 , 

 (3.4)    )1(OX nn  , 

and 

(3.5)                                   nn A   for all  n . 

(3.6)     
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where  nt  is the n th  1,C mean of the sequence  nan
.
. 

Then the series  nna  is summable .0,1,)(,,   kpN
knn

 

             In order to prove the theorem we require the following lemma. 

4. Lemma  

            Let      0,10,log  
 nnff n   be a sequence and  nX   be a quasi - f - power 

increasing sequence. Let   nA  be a sequence of numbers such that it is  quasi – monotone satisfying (3.1) and 

(3.2). then  

 (4.1)     1OAXn nn   

and 

(4.2)    ,
1




m

n

nn AX as .m  

4.1. Proof Of The Lemma  

         As 0nA and    nXnn
 log  is non-decreasing, we have  
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This establishes (4.1). 
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This establishes (4.2). 

5. Proof Of The Theorem 

Let  nT  be the sequence of   npN ,  mean of the series ,
1
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In order to prove the theorem ,using  Minkowski’s  inequality it is enough to show that 
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Applying H o lder’s inequality, we have  
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This completes the proof of the theorem. 
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