Indexed Absolute Riesz Summability Factor Using Delta Quasi Monotone Sequence

P.Palo ${ }^{1}$, B.P.Padhy ${ }^{2}$, P.Samanta ${ }^{3}$, M.Misra ${ }^{4}$ and U.K.Misra ${ }^{5}$
${ }^{1}$ Department of Mathematics, Khetramohan College, Narendrapur, Ganjam,Odisha, INDIA.
${ }^{2}$ Department of Mathematics, School of Applied Sciences, KIIT University,Bhubaneswar, Odisha, INDIA
${ }^{3}$ P.G.Department of Mathematics, Berhampur University, Bhanjabihar, Odisha, INDIA
${ }^{4}$ Department of Mathematics, B.A.College, Berhampur, Odisha, INDIA.
${ }^{5}$ Department of Mathematics, National Institute of Science and Technology, Pallur Hills, Berhampur, Odisha, INDIA.

Abstract

. A result concerning absolute indexed Riesz Summability factor of an infinite series using δ-quasi monotone sequence has been established.

Keywords: Quasi-increasing; Quasi - f - power increasing; δ - Quasi monotone; index absolute Summability; summability factor.
AMS Classification No: 40A05, 40D15, 40F05

1. Introduction

We ask that authors follow simple guidelines. In essence, we ask you to make your paper look exactly like this document. A sequence $\left(a_{n}\right)$ of positive numbers is said to be almost increasing if there exists a positive sequence $\left(b_{n}\right)$ and two positive constants A and B such that

$$
\begin{equation*}
A b_{n} \leq a_{n} \leq B b_{n}, \text { for all } n \in N \tag{1.1}
\end{equation*}
$$

It is said to be quasi- β-power increasing, if there exists a constant K depending upon β with $K \geq 1$ such that

$$
\begin{equation*}
K n^{\beta} a_{n} \geq m^{\beta} a_{m}, \tag{1.2}
\end{equation*}
$$

for all $n \geq m$. Particularly, if $\beta=0$, then $\left(a_{n}\right)$ is a quasi-increasing sequence. It is clear that for any nonnegative β, every almost increasing sequence is a quasi- β-power increasing sequence. But the converse is not true in general, as $\left(n^{-\beta}\right)$ is quasi- β-power increasing but not almost increasing.

Let $f=\left(f_{n}\right)$ be a positive sequence of numbers. Then the positive sequence $\left(a_{n}\right)$ is said to be quasi- f power increasing, if there exists a constant K depending upon f with $K \geq 1$ such that

$$
\begin{equation*}
K f_{n} a_{n} \geq f_{m} a_{m} \tag{1.3}
\end{equation*}
$$

for $n \geq m \geq 1$. Clearly, if $\left(a_{n}\right)$ is a quasi- f-power increasing sequence, then the $\left(a_{n} f_{n}\right)$ is a quasi- increasing sequence.

Let $\delta=\left(\delta_{n}\right)$ be a positive sequence of numbers. Then the positive sequence $\left(a_{n}\right)$ is said to be δ-quasi monotone, $a_{n} \rightarrow 0, a_{n}>0$ ultimately and $\Delta d_{n} \geq-\delta_{n}$, where $\Delta d_{n}=d_{n}-d_{n-1}$.

Let $\sum a_{n}$ be an infinite series with sequence of partial sums $\left\{s_{n}\right\}$. Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty, \text { as } n \rightarrow \infty
$$

Then the sequence-to-sequence transformation

$$
\begin{equation*}
T_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v}, P_{n} \neq 0 \tag{1.4}
\end{equation*}
$$

defines the $\left(\bar{N}, p_{n}\right)$ - mean of the sequence $\left(s_{n}\right)$ generated by the sequence of coefficients $\left(p_{n}\right)$. The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, \quad k \geq 1$, if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n}-T_{n-1}\right|^{k}<\infty \tag{1.5}
\end{equation*}
$$

The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n} ; \delta\right|_{k}, k \geq 1, \delta \geq 0$, if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|T_{n}-T_{n-1}\right|^{k}<\infty \tag{1.6}
\end{equation*}
$$

The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}, \alpha_{n}(\delta)\right|_{k}, k \geq 1, \delta \geq 0$, if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\alpha_{n}\right)^{k}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n}-T_{n-1}\right|^{k}<\infty \tag{1.7}
\end{equation*}
$$

For any real number μ, the series $\sum a_{n}$ is said to be summable by the summabilty method $\bar{N}, p_{n}, \alpha_{n}(\delta),\left.\mu\right|_{k}, k \geq 1, \delta \geq 0$, if
(1.8)

$$
\sum_{n=1}^{\infty}\left(\alpha_{n}\right)^{k \mu}\left(\frac{P_{n}}{p_{n}}\right)^{\mu(k-1)}\left|T_{n}-T_{n-1}\right|^{k}<\infty .
$$

For $\mu=1$, the summability method $\left|\bar{N}, p_{n}, \alpha_{n}(\delta), \mu\right|_{k}, k \geq 1, \delta \geq 0, \quad$ reduces \quad to the method $\left|\bar{N}, p_{n}, \alpha_{n}(\delta)\right|_{k}, k \geq 1, \delta \geq 0$,

2. Known Theorems

Dealing with quasi- f - power increasing sequence, Palo et al[4] prove the following theorem.

2.1. Theorem

Let $f=\left(f_{n}\right)=\left(n^{\beta}(\log n)^{\gamma}\right)$ be a sequence and $\left(X_{n}\right)$ be a quasi- f-power sequence.
Let $\left(\lambda_{n}\right)$ a sequence of constants such that

$$
\begin{align*}
& \lambda_{n} \rightarrow 0, \text { as } n \rightarrow \infty, \tag{2.1.1}\\
& \sum_{n=1}^{\infty} n X_{n}|\Delta| \Delta \lambda_{n} \mid<\infty \tag{2.1.2}\\
& \left|\lambda_{n}\right| X_{n}=O(1) \tag{2.1.3}\\
& \sum_{n=v+1}^{m}\left(\alpha_{n}\right)^{k \mu}\left(\frac{P_{n}}{p_{n}}\right)^{(\mu-1)(k-1)-1} \frac{1}{P_{n-1}^{k}}=O\left(\left(\alpha_{m}\right)^{k \mu}\left(\frac{P_{n}}{p_{n}}\right)^{(\mu-1)(k-1)-1}\right), \tag{2.1.4}\\
& \sum_{n=1}^{m}\left(\alpha_{n}\right)^{k \mu}\left(\frac{P_{n}}{p_{n}}\right)^{(\mu-1)(k-1)-1} \frac{\left|t_{n}\right|^{k}}{X_{n}^{k-1}}=O\left(X_{m}\right), \tag{2.1.5}\\
& \sum_{n=1}^{m}\left(\alpha_{n}\right)^{k \mu}\left(\frac{p_{n}}{P_{n}}\right)^{(\mu-1)(k-1)} \frac{\left|t_{n}\right|^{k}}{n X_{n}^{k-1}}=O\left(X_{m}\right), \tag{2.1.6}
\end{align*}
$$

where $\left(t_{n}\right)$ is the nth $(C, 1)$ mean of the sequence $\left(n a_{n}\right)$.
Then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}, \alpha_{n}(\delta)\right|_{k}, k \geq 1, \delta \geq 0$.
Dealing with quasi- δ - quasi monotone sequence, Sarangi et al. [4] Proved the following theorem:

2.2. Theorem

Let $f=\left(f_{n}\right)=\left(n^{\beta}(\log n)^{\gamma}\right)$ be a sequence and $\left(X_{n}\right)$ be a quasi- f-power sequence. Suppose also that there exists a sequence of numbers $\left(A_{n}\right)$ such that it is δ - quasi - monotone with

$$
\begin{align*}
& \sum n \delta_{n} X_{n}<\infty \tag{2.2.1}\\
& \Delta A_{n} \leq \delta_{n} \quad \text { for all } n
\end{align*}
$$

Let $\left(\lambda_{n}\right)$ a sequence of constants such that

$$
\begin{align*}
& \lambda_{n} \rightarrow 0, \text { as } n \rightarrow \infty, \tag{2.2.3}\\
& \left|\lambda_{n}\right| X_{n}=O(1), \tag{2.2.4}
\end{align*}
$$

and

$$
\begin{equation*}
\left|\Delta \lambda_{n}\right| \leq\left|A_{n}\right| \text { for all } n \tag{2.2.5}
\end{equation*}
$$

Then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n} ; \sigma, \mu\right|_{k}, k \geq 1, \sigma \geq 0$., if

$$
\begin{align*}
& \sum_{n=v+1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\sigma k-1} \frac{1}{P_{n-1}}=O\left(\frac{P_{v}}{p_{v}}\right)^{\sigma k-1}, \tag{2.2.6}\\
& \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\mu(\sigma k+k-1)-k} \frac{\left|t_{n}\right|^{k}}{X_{n}^{k-1}}=O\left(X_{m}\right), \tag{2.2.7}\\
& \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\mu(\sigma k+k-1)-k+1} \frac{\left|t_{n}\right|^{k}}{n X_{n}^{k-1}}=O\left(X_{m}\right), \tag{2.2.8}
\end{align*}
$$

where $\left(t_{n}\right)$ is the nth $(C, 1)$ mean of the sequence $\left(n a_{n}\right)$.
However, extending to summability method $\left|\bar{N}, p_{n}, \alpha_{n}(\delta), \mu\right|_{k}, k \geq 1, \delta \geq 0$, in this paper, we prove the following theorem.

3. Theorem

Let $f=\left(f_{n}\right)=\left(n^{\beta}(\log n)^{\gamma}\right)$ be a sequence and $\left(X_{n}\right)$ be a quasi- f-power sequence. Suppose also that there exists a sequence of numbers $\left(A_{n}\right)$ such that it is δ-quasi - monotone with

$$
\begin{align*}
& \sum n \delta_{n} X_{n}<\infty \tag{3.1}\\
& \Delta A_{n} \leq \delta_{n} \quad \text { for all } n
\end{align*}
$$

Let $\left(\lambda_{n}\right)$ a sequence of constants such that

$$
\begin{align*}
& \lambda_{n} \rightarrow 0, \text { as } n \rightarrow \infty \tag{3.3}\\
& \left|\lambda_{n}\right| X_{n}=O(1) \tag{3.4}
\end{align*}
$$

and

$$
\begin{equation*}
\left|\Delta \lambda_{n}\right| \leq\left|A_{n}\right| \text { for all } n . \tag{3.5}
\end{equation*}
$$

$$
\begin{align*}
& \sum_{n=v+1}^{m}\left(\alpha_{n}\right)^{k \mu}\left(\frac{P_{n}}{p_{n}}\right)^{(\mu-1)(k-1)-1} \frac{1}{P_{n-1}^{k}}=O\left(\left(\alpha_{m}\right)^{k \mu}\left(\frac{P_{n}}{p_{n}}\right)^{(\mu-1)(k-1)-1}\right) \tag{3.6}\\
& \sum_{n=1}^{m}\left(\alpha_{n}\right)^{k \mu}\left(\frac{P_{n}}{p_{n}}\right)^{(\mu-1)(k-1)-1} \frac{\left|t_{n}\right|^{k}}{X_{n}^{k-1}}=O\left(X_{m}\right) \tag{3.7}\\
& \sum_{n=1}^{m}\left(\alpha_{n}\right)^{k \mu}\left(\frac{p_{n}}{P_{n}}\right)^{(\mu-1)(k-1)} \frac{\left|t_{n}\right|^{k}}{n X_{n}^{k-1}}=O\left(X_{m}\right) \tag{3.8}
\end{align*}
$$

where $\left(t_{n}\right)$ is the nth $(C, 1)$ mean of the sequence $\left(n a_{n}\right)$.
Then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}, \alpha_{n}(\delta)\right|_{k}, k \geq 1, \delta \geq 0$.
In order to prove the theorem we require the following lemma.

4. Lemma

Let $f=\left(f_{n}\right)=\left(n^{\beta}(\log n)^{\gamma}\right), 0 \leq \beta<1, \gamma \geq 0 \quad$ be a sequence and $\left(X_{n}\right)$ be a quasi - f - power increasing sequence. Let $\left(A_{n}\right)$ be a sequence of numbers such that it is δ - quasi - monotone satisfying (3.1) and (3.2). then

$$
\begin{equation*}
n X_{n}\left|A_{n}\right|=O(1) \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{m} X_{n}\left|A_{n}\right|<\infty, \text { as } m \rightarrow \infty \tag{4.2}
\end{equation*}
$$

4.1. Proof Of The Lemma

As $A_{n} \rightarrow 0$ and $n^{\beta}(\log n)^{\gamma} X_{n}$ is non-decreasing, we have

$$
\begin{aligned}
n X_{n}\left|A_{n}\right| & =n^{1-\beta}(\log n)^{-\gamma}\left(n^{\beta}(\log n)^{\gamma} X_{n}\right) \sum_{v=n}^{\infty} \Delta\left|A_{v}\right| \\
& =O(1) n^{1-\beta}(\log n)^{\gamma} n \sum_{v=n}^{\infty} v^{\beta}(\log v)^{\gamma} X_{v}\left|\Delta A_{v}\right| \\
& =O(1) \sum_{v=n}^{\infty} v^{1-\beta}(\log v)^{-\gamma} v^{\beta}(\log v)^{\gamma} X_{v}\left|\Delta A_{v}\right| \\
& =O(1) \sum_{v=n}^{\infty} v X_{v}\left|\Delta A_{v}\right| \\
& =O(1) \sum_{v=n}^{\infty} v X_{v}\left|\delta_{v}\right| \\
& =O(1)
\end{aligned}
$$

This establishes (4.1).
Next

$$
\sum_{n=1}^{m} X_{n}\left|A_{n}\right|=\sum_{n=1}^{m-1}\left(\sum_{r=1}^{n} X_{r}\right) \Delta\left|A_{n}\right|+\left|A_{m}\right|\left(\sum_{r=1}^{m} X_{r}\right)
$$

$$
\left.\begin{array}{l}
\begin{array}{rl}
=O(1) \sum_{n=1}^{m-1}\left(\sum_{r=1}^{n} r^{-\beta}(\log r)^{-\gamma} r^{\beta}(\log r)^{\gamma} X_{r}\right) \Delta\left|A_{n}\right| \\
& +O(1)\left(\sum_{r=1}^{m} r^{-\beta}(\log r)^{-\gamma} r^{\beta}(\log r)^{\gamma} X_{r}\right)\left|A_{m}\right|
\end{array} \\
\begin{array}{rl}
=O(1) \sum_{n=1}^{m-1}\left(n^{\beta}(\log n)^{\gamma} X_{n}\right)\left|A_{n}\right| \sum_{r=1}^{n} r^{-\beta-\epsilon}(\log r)^{-\gamma} r^{\epsilon} \\
& +O(1) m^{\beta} X_{m}\left|A_{m}\right|(\log m)^{\gamma} \sum_{r=1}^{m} r^{-\beta-\epsilon}(\log r)^{-\gamma} r^{\epsilon}, \in<1-\beta .
\end{array} \\
\begin{array}{rl}
=O(1) \sum_{n=1}^{m-1}\left(n^{\beta}(\log n)^{\gamma} X_{n}\right)\left|A_{n}\right| n^{\epsilon}(\log n)^{-\gamma} \sum_{r=1}^{n} r^{-\beta-\epsilon}
\end{array} \\
\quad+O(1) m^{\beta} X_{m}\left|A_{m}\right|(\log m)^{\gamma} m^{\epsilon}(\log m)^{-\gamma} \sum_{r=1}^{m} r^{-\beta-\epsilon} \\
=O(1) \sum_{n=1}^{m} n^{\beta+\epsilon} X_{n} \Delta\left|A_{n}\left(\int_{1}^{n} u^{-\beta-\epsilon} d u\right)+O(1) m^{\beta+\epsilon} X_{m}\right| A_{m}\left(\int_{1}^{m} u^{-\beta-\epsilon} d u\right)
\end{array}\right] \begin{aligned}
& =O(1) \sum_{n=1}^{m} n X_{n} \Delta\left|A_{n}\right|+O(1) m X_{m}\left|A_{m}\right|
\end{aligned}
$$

This establishes (4.2).

5. Proof Of The Theorem

Let $\left(T_{n}\right)$ be the sequence of $\left(\bar{N}, p_{n}\right)$ mean of the series $\sum_{n=1}^{\infty} a_{n} \lambda_{n}$, then

$$
\begin{aligned}
& T_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} \sum_{r=0}^{v} a_{r} \lambda_{r} \\
& =\frac{1}{P_{n}} \sum_{v=0}^{n}\left(P_{n}-P_{v-1}\right) a_{v} \lambda_{v}
\end{aligned}
$$

Hence for $n \geq 1$

$$
\begin{aligned}
& T_{n}-T_{n-1}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} a_{v} \lambda_{v} \\
& =\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} v a_{v}\left(\frac{1}{v} P_{v-1} \lambda_{v}\right)
\end{aligned}
$$

$=\frac{(n+1)}{n} \frac{p_{n}}{P_{n}} t_{n} \lambda_{n}+\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} p_{v-1} t_{v} \lambda_{v} \frac{v+1}{v}+\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} t_{v} \frac{v+1}{v} \Delta \lambda_{v} \quad+\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} t_{v} \frac{\lambda_{v+1}}{v}$
$=T_{n 1}+T_{n 2}+T_{n 3}+T_{n 4}($ say $)$.

In order to prove the theorem, using Minkowski’s inequality it is enough to show that
$\sum_{n=1}^{m}\left(\alpha_{n}\right)^{k \mu}\left(\frac{P_{n}}{p_{n}}\right)^{\mu(k-1)}\left|T_{n j}\right|<\infty, j=1,2,3,4$.
Applying H \ddot{o} lder's inequality, we have
$\sum_{n=1}^{m}\left(\alpha_{n}\right)^{k \mu}\left(\frac{P_{n}}{p_{n}}\right)^{\mu(k-1)}\left|T_{n, 1}\right|^{k}$
$=\sum_{n=1}^{m}\left(\alpha_{n}\right)^{k \mu}\left(\frac{P_{n}}{p_{n}}\right)^{\mu(k-1)}\left|\frac{(n+1)}{n} \frac{p_{n}}{P_{n}} t_{n} \lambda_{n}\right|^{k}$
$=O(1) \sum_{n=1}^{m}\left(\alpha_{n}\right)^{k \mu}\left(\frac{P_{n}}{p_{n}}\right)^{(\mu-1)(k-1)-1} \frac{\left|t_{n}\right|^{k}}{X_{n}^{k-1}}\left(X_{n}\left|\lambda_{n}\right|\right)^{k-1}\left|\lambda_{n}\right|$
$=O(1) \sum_{n=1}^{m}\left(\alpha_{n}\right)^{k \mu}\left(\frac{P_{n}}{p_{n}}\right)^{(\mu-1)(k-1)-1} \frac{\left.| |_{n}\right|^{k}}{X_{n}^{k-1}}\left|\lambda_{n}\right|$
$=O(1) \sum_{n=1}^{m-1}\left(\sum_{v=1}^{n}\left(\alpha_{v}\right)^{k \mu}\left(\frac{P_{V}}{p_{v}}\right)^{(\mu-1)(k-1)-1} \frac{\left|t_{v}\right|^{k}}{X_{v}^{k-1}}\right) \Delta\left|\lambda_{n}\right|$

$$
+O(1)\left(\sum_{v=1}^{m}\left(\alpha_{v}\right)^{k \mu}\left(\frac{P_{v}}{p_{v}}\right)^{(\mu-1)(k-1)-1} \frac{\left|t_{v}\right|^{k}}{X_{v}^{k-1}}\right)\left|\lambda_{m}\right|
$$

$=O(1) \sum_{n=1}^{m-1} X_{n}\left|A_{n}\right|+O(1) X_{m}\left|\lambda_{m}\right|$
$=O(1)$

Next,

$$
\begin{aligned}
& \sum_{n=1}^{m}\left(\alpha_{n}\right)^{k \mu}\left(\frac{P_{n}}{p_{n}}\right)^{\mu(k-1)}\left|T_{n, 2}\right|^{k} \\
& =\sum_{n=1}^{m}\left(\alpha_{n}\right)^{k \mu}\left(\frac{P_{n}}{p_{n}}\right)^{\mu(k-1)}\left|\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} p_{v-1} t_{v} \lambda_{v} \frac{(v+1)}{v}\right|^{k} \\
& =O(1) \sum_{n=1}^{m}\left(\alpha_{n}\right)^{k \mu}\left(\frac{P_{n}}{p_{n}}\right)^{(\mu-1)(k-1)-1} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v-1}\left|t_{v}\right|^{k}\left|\lambda_{v}\right|^{k}\left(\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m} p_{v-1}\left|t_{v}\right|^{k}\left|\lambda_{v}\right|^{k} \sum_{n=v+1}^{m}\left(\alpha_{n}\right)^{k \mu}\left(\frac{P_{n}}{p_{n}}\right)^{(\mu-1)(k-1)-1} \frac{1}{P_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left(\alpha_{v}\right)^{\left.k \mu\left(\frac{P_{v}}{p_{v}}\right)^{(\mu-1)(k-1)-1}\left|t_{v}\right|_{\mid \lambda_{v}}\right|^{k}} \\
& =O(1)
\end{aligned}
$$

Again,

$$
\begin{aligned}
& \sum_{n=1}^{m}\left(\alpha_{n}\right)^{k \mu}\left(\frac{P_{n}}{p_{n}}\right)^{\mu(k-1)}\left|T_{n, 3}\right|^{k} \\
& =\sum_{n=1}^{m}\left(\alpha_{n}\right)^{k \mu}\left(\frac{P_{n}}{p_{n}}\right)^{\mu(k-1)}\left|\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} p_{v} t_{v} \frac{(v+1)}{v} \Delta \lambda_{v}\right|^{k} \\
& =O(1) \sum_{n=1}^{m}\left(\alpha_{n}\right)^{k \mu}\left(\frac{P_{n}}{p_{n}}\right)^{(\mu-1)(k-1)-1} \frac{1}{P_{n-1}^{k}} \sum_{v=1}^{n-1} p_{v}^{k} \frac{\left|t_{v}\right|}{X_{v}^{k-1}}\left|\Delta \lambda_{v}\right|\left(\sum_{v=1}^{n-1} X_{v}\left|\Delta \lambda_{v}\right|\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m} p_{v}^{k} \frac{\left|t_{v}\right|^{k}}{X_{v}^{k-1}}\left|\Delta \lambda_{v}\right|_{n=v+1}^{m+1}\left(\alpha_{n}\right) k \mu\left(\frac{P_{n}}{p_{n}}\right)^{(\mu-1)(k-1)-1} \frac{1}{P_{n}^{k}} \\
& =O(1) \sum_{v=1}^{m}\left(\alpha_{v}\right)^{k \mu}\left(\frac{P_{v}}{p_{v}}\right)^{(\mu-1)(k-1)} \frac{\left|t_{v}\right|^{k}}{v X_{v}^{k-1}}\left(v\left|\Delta \lambda_{v}\right|\right) \\
& =O(1)\left(\sum_{v=1}^{m-1}\left(\sum_{r=1}^{v}\left(\alpha_{r}\right)^{k \mu}\left(\frac{P_{r}}{p_{r}}\right)^{(\mu-1)(k-1)}\right) \frac{\left|t_{r}\right|^{k}}{r X_{r}^{k-1}}\right)\left(v\left|\Delta \lambda_{v}\right|\right)
\end{aligned}
$$

$$
\begin{aligned}
& \qquad+O(1)\left(m\left|\Delta \lambda_{m}\right|\right) \sum_{r=1}^{m}\left(\alpha_{r}\right)^{k \mu}\left(\frac{P_{r}}{p_{r}}\right)^{(\mu-1)(k-1)} \\
& =O(1) \sum_{\nu=1}^{m-1} X_{\nu}\left(-\left|\Delta \lambda_{\nu}\right|+(v+1)|\Delta| \Delta \lambda_{\nu} \mid\right)+O(1) m X_{m}\left|\Delta \lambda_{m}\right| \\
& =O(1)
\end{aligned}
$$

Finally,

$$
\begin{aligned}
& \sum_{n=1}^{m}\left(\alpha_{n}\right)^{k \mu}\left(\frac{P_{n}}{p_{n}}\right)^{\mu(k-1)}\left|T_{n, 4}\right|^{k} \\
& =\sum_{n=1}^{m}\left(\alpha_{n}\right)^{k \mu}\left(\frac{P_{n}}{p_{n}}\right)^{\mu(k-1)}\left|\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} p_{v} t_{v} \frac{\lambda_{v+1}}{v}\right|^{k} \\
& =\left.\left.O(1) \sum_{n=1}^{m}\left(\alpha_{n}\right)^{k \mu}\left(\frac{P_{n}}{p_{n}}\right)^{(\mu-1)(k-1)-1} \frac{1}{P_{n-1}^{k}} \sum_{v=1}^{n-1} \frac{p_{v}}{v}\right|_{v}\right|^{k}\left|\lambda_{v}\right|^{k}\left(\sum_{v=1}^{n-1} \frac{p_{v}}{v}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m} \frac{p_{v}}{v}\left|t_{v}\right|^{k}\left|\lambda_{v}\right|^{k} \sum_{n=v+1}^{m}\left(\alpha_{n}\right)^{k \mu}\left(\frac{P_{n}}{p_{n}}\right)^{(\mu-1)(k-1)-1} \frac{1}{P_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left(\alpha_{v}\right)^{k \mu}\left(\frac{P_{v}}{p_{v}}\right)^{(\mu-1)(k-1)} \frac{\left|t_{v}\right|^{k}}{v X_{v}^{k-1}}\left(X_{v}\left|\lambda_{v}\right|\right)\left|\lambda_{v}\right| \\
& =O(1) \sum_{v=1}^{m-1}\left\{\sum_{r=1}^{v}\left(\alpha_{r}\right)^{k \mu}\left(\frac{P_{r}}{p_{r}}\right)^{(\mu-1)(k-1)} \frac{\left|t_{r}\right|^{k}}{r X_{r}^{k-1}}\right\}\left|\Delta \lambda_{v}\right| \\
& +O(1) \sum_{r=1}^{m}\left(\alpha_{r}\right)^{k \mu}\left(\frac{P_{r}}{p_{r}}\right)^{(\mu-1)(k-1)} \frac{\left|t_{r}\right|^{k}}{r X_{r}^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1} X_{v}\left|\Delta \lambda_{v}\right|+O(1) m X_{m}\left|\Delta \lambda_{m}\right| \\
& =O(1) \text {. }
\end{aligned}
$$

This completes the proof of the theorem.

References

[1] Bor,H. (1986). A Note on two summability methods, Proc.Amer. Math. Soc.98, 81-84.
[2] Bor, H, Debnath, L (2004). Quasi - β - power increasing sequences, International journal of Mathematics and Mathematical Sciences, 44, 2371-2376.
[3] Leinder, L (2006). A recent note on absolute Riesz summability factors J.Ineq. Pure and Appl.Math.7(2), article-44.
[4] Sarangi, S, Dash, M, Paikray, S.K, Mira, M and Misra, U.K, (2015). An application of $\boldsymbol{\delta}$ quasi monotone sequence, Global journal of pure and applied mathematics,. 11(5), 2813-2823.
[5] Paikray, S.K., Jati, R.K, Misra, U.K and Sahoo, N.C, (2013). Absolute Indexed Summability factor of an infinite series using f-power increasing sequences, Engg. Mathematics letters, 2(1), 56-66.
[6] Sulaiman, W.T, (2006). Extension on absolute summability factors, J. Math. Anal. Appl. ,322, 1224-1230.
[7] Sulaiman, W.T, (2007). A recent note on absolute Riesz summability factors of an infinite series J.Appl. Functional Analysis, 7(4), 381-387.

