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Abstract

Hadjidimos [1], proved that the Accelerated OverRelaxation (AOR) is more powerful compared with the
other well-known method called the Successive OverRelaxation (SOR) for solving linear systems of
equations. The formulation of group iterative schemes for approximating the solution of the two
dimensional elliptic partial differential equations have been the subject of intensive study during the last
few years. The recent convergence results of nine-point (N-P) group iterative schemes from the
Successive OverRelaxation (SOR) family have been presented by Saeed [2]. In this paper, we extend
the work of Saeed [2] with the new application of suitable preconditioning techniques to the N-P Group
iterative schemes from the Accelerated OverRelaxation (AOR) for solving Poisson’s Equation. The
results reveal the significant improvement in number of iterations and execution timings of the proposed
preconditioned Group iterative method compared to Preconditioned N-P SOR.

Keywords: Preconditioning Techniques; Nine-Point Group lterative Method; AOR.

1. Introduction

It has been confirmed that the discretisation of partial differential equations (PDEs) using finite difference schemes
normally yield a system of linear equations, which are large and sparse in nature. Iterative methods are usually used
to solve these types of systems since these methods need less storage and are capable of preserving the sparsity
property of the large system. Many researchers have considered preconditioners which applied to these iterative
methods for solving linear systems ([3], [4], [5], [6]). In Saeed [2], the application of the new preconditioner in
block formulation for the N-P Group SOR iterative method is presented to accelerate the convergence rate of this
group method. The resulted preconditioned system showed improvements in the number of iterations and the
execution time. In this research the most efficient preconditioned group AOR iterative method for solving elliptic
partial differential equations will be investigated. Furthermore, we will compare the proposed method with the
original nine-point group AOR iterative method and the earlier preconditioned group SOR [2] for solving the two
dimensional Poisson equation.
Consider the Poisson equation in the form:
, 0u ou .

vV 8x2+8y2 f(xy), (xy)eQ (1.1)

with specific Dirichlet boundary conditions
U,y)=g,y). (x,y)eoQ.

In SOR method, we have to determine the parameter @, where a suitable value of w could lead to drastic
improvements in convergence. The AOR method involves two parameters, r and @ . We observe that for specific
values of these parameters, we can obtain Jacobi, Gauss-Seidel and SOR iterative methods. If r=0 and w=1,
we have the Jacobi method. If =@ =1, Gauss-Seidel method can be obtained, and for the SOR method, we
consider I = [1]. It is well known that the AOR method is an iterative method for the numerical solution of the
linear systems of equations,

AT=f (1.2)
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and also, we can consider the AOR method as a generalization method of Jacobi, Gauss-Seidel and SOR iterative
methods.
This paper is organised as follows: in Section 2, we present the derivation of the proposed preconditioned N-P AOR

method. The numerical results are presented to show the efficiency of the preconditioned N-P AOR method in
Section 3. Finally, we report a brief conclusion in Section 4.

2. Derivation of The Proposed Preconditioned N-P AOR Method

Suppose equation (1.1) is discretised using some finite difference scheme, this will normally lead to a large, block
and sparse system of equation (1.2).

Equation (1.1) may be approximated at the point (x, Yi) in many ways. Assume that a rectangular grid in the
(x,y) plane with equal grid spacing h in both directions with x, =ih,y = jh(i,j =0,1,...N ) are used, where
U =u(x.y,;) and h =1/N . By neglecting terms of O (h?), we obtain the simplest approximation for (1.1) which
is known as the standard five-point difference formula:

Up oy Ui g + g +Uiy  —4U; =h?f (2.1)
According to Saeed [2], the explicit 9-point group iterative equatlons are given by:

i, j+1

1
u; = ﬁ[67t1 +22t, + 7t, - 14t + 6t +3t,], U= é[B?t19 +11t, + 7t — 14t + 5t,, + 3t ],

Uoj = 514[67t3 +22t, + 7t —14t, +6t, +3t,], Uiy = i[37t21 +11t, + 7t —14t, +5t,, + 3t,; ],

1
Uig ju = E[Ztn - 6t0 +t12]’ ! Uiz jun = 112 [37t22 +11t17 + 7t16 l4t + 5t21 + 3t15]
U= i[67t4 +22t, + 7t —14t, +6t,, +3t,], Ui ji2 = —[37t20 +11t, + 7ty —14t, + 5t ¢ + 3t ],
' 224 ' 112
Uiz = %[GYt6 +22t, + 7t, —14t, +6t, + 3t ]
(2.2)
where:
t =h*f . t=U,; —h?f . t,=u, —h%f ,  —h*f
0 i+, j+1? i-1, Ij -1 i+, j+1? i+1, ] 1 | -1,j+1 i+, ] i,j+1?
t3 = l"Ii+2 j-1 +u|+3 j h2 fi+2 j? t4 = ui—l j+2 + ul j+3 h fl j+21 t u|+3 j+L +u|+1 j+3 h2 fi+2,j+1 h f|+1 j+21
tS = ui+3,j+2 +u|+2 j+3 h f|+2 j+27 t7 =t3 +t4’ tB _T’l +t3' t u|+3 J+1 | —1,j+1 h2 f|+2,j+1 _hz fi,j+1’
to =t +t, b, =1+, t, =t +t,, ts = Ui i1 TUig h2f|+1,j_h2fi+2,j+1'
t.l4 U; 1J+1+u|+1 j+3 hz 1:i,j+1_hz fi+1,j+2’ ti :t1+t4’ tl u|+1j 1+u|+1 j+3 h2 f|+lj _h2 f|+1j+2'
t17 _t +t t18 _t.l +t6’ 1‘19 |+lj -1 h2 f|+1,j' t20 |+1 j+3 h f|+1 j+2? t21 | —1,j+1 h2 fl j+1
t22 |+3 j+ h f|+2 ]+l

and then the nine-point SOR iterative scheme can be written as:

u = 14 [w(67t, +22t, + 7t, —14t, +6t; +3t; )]+ (1— w)u”

U] ij

u's? = 12 [m(37t19 +11t, + 7t, — 14t +5t, +3t,)]+ L—o)u)

i+1,j!
uffz*lj) = 14 [(67t, +22t,, + Tt,, —14t, +6t, +3t,)]+ (L— 0)u’) 0

uly = 2 [(o(37t21 +11t, + 7t —14t, +5t,, +3t,,)]+ (L— w)u®

i,j+1?

uu(ffﬂl = _[@(Ztn —6t, +1,)]+(1- m)u(k)

i+1, j+1?
ui(g'lj)ﬂ - —[0)(37’[22 +11t, + 7t —14t, + 58, +3t,)]+ (1 (x))Ul(B jo1r
“.(k,ilz) [m(67t +22t, + Tty 148, + 6ty +3t,)]+ L w)u,,

i+1,j+2°

uls?, :E[m(37t20+11tm+7t —14t, +5t,, +3t,)]+ (L— o)u®)
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ulen ﬁ[m(em 201, +7t, —14t, +6t, +3t)] + (1— 0)uY

i+2,j+2 i+2,j+21
(2.3)

where

_h2 _ 1 (k+D) (k+1) 2 _ (k) (k+1) 2 2
to =h fi+1,j+1’ t1 - ui—l,j +ui,j—1 —h fi,j g tz - ui+l,j—1 +ui—1,j+l —-h fi+1,j —h fi,j+1'

_ (k1) (k) 2 2 _ (k1) (k) 2
ts - ui+2,j—1 +ui+3,j —h fi+3,j —-h fi+2,j ' t4 - ui—l,j+2 +ui,j+3 —h fi,j+2'

—_ 1K) (k) 2 2 —_ 1K) (k) 2
ts - ui+3,j+1 + ui+l,j+3 -h fi+2,j+1 -h fi+1,j+2' te - ui+2,j+2 + ui+2,j+3 -h fi+2,j+27

— _ (3 (k+1) 2 2
t7 —t3+t4’ ts _t1+t31 t9 _ui+3,j+1+ui—1,j+l_h fi+2,j+1_h fi,j+1'

— _ _ o (k+) (k) 2 2
to=t,+t, t,=tL+t, b=+, ts _ui+l,j—1+ui+3,j+l_h fi+1,j —-h fi+2,j+1'

k-+1) k 2 2 _ (k1) () 2 2

t14 :ui(—lJ,rj)+1+ui(+1),j+3_h fi,j+1_h fi+1,j+2' t15 _t1+t4' th _ui+l,j—1+ui+1,j+3_h fi+1,j -h fi+1,j+2'

_ _ (kD) 2
t17_t3+t6’ t18_t1+t6’ t19_ui+1+,j—1_h fi+1,j'

_ ) 2 (kD) 2 k) 2
tzo - ui+1,j+3 —h fi+l,j+2’ t21 - ui—l,j+1 —-h fi,j+1’ tzz - ui+3,j+1 —-h fi+2,j+1 '
Matrix A of (1.2) is also written as

A=D-L-U, (2.4)

where D is a diagonal matrix and L and U are strictly lower and upper triangular matrices, respectively. The AOR
iterative method can be written as:

u“? =L u® +ao(D-rL)*f (2.5)
where L =(1- rD'L)'[A-w)l +(w-r)D'L+wDU].
Equation (2.5) can be rewritten as

(D-rL)u®*? =(@—r)Lu® + @wlu® + o f + (1—w)Du™ (2.6)
We also can write equation (2.6) as
Du®™® = rL®™® —u®)+ wLu® + u® + & T +(1—w)Du®, 2.7)
We can observe that the coefficient for expressions u®y>, u®), ufe?,, ufsy,, ul?D, and uD, contained
inL.
In order to construct AOR scheme, we have to change these expressions to Ui(i), i ui(’kj)&, u,(fl) i1 Ui(B, i1
(k) K . K+1 K KL K (k+1) (k)
u),,, and ul), . After that, add expressions ar(ulY—u).), ar@?Y-ul), aruly?, -ull, ),
ar(uis?, —uld ), aru?, —ul ) and arul?, —ul,,)) to correspond SOR iterative scheme,

where o is the coefficient for those expressions.

Hence, nine-point group AOR iterative scheme can be written as:
1

ul = ﬁ[co(GYt1 +22t, +7t, =14t + 6t +3t,) + r(67¢c, +22¢, + 7¢, ]+ (1— o)ul”

i ij

u = é[m(wt19 +11t, + 7ty — 14t +5t,, +3t,)) +r(37¢, +11c,, +7c, +3¢,]+ L-o)ut)

i+, ] i+1,j?

i+2,] i+2,j?

D = 2_;4[@(67'[3 +22,, + Tt — 14t +6t, +3t,) +r(67c, +22¢, + 7c, +6¢, + 3¢, ] + (L w)u®)

1
ud = E[03(37t21 +11t, + 7t —14t, +5t, +3t,) +r(37c, +11c,, + 7¢, + 3¢, ]+ 1— w)u

ij+1 i,j+1

i+1,j+1 T i+1,j+1?

U-(k+l) - %[W(Ztu - 6to +t12) + I’(208 + C11] + (1_ w)u'(k)
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i+2,j+1 = i+2, j+1?

ulon = é[w(snzz +11t,, + 7t —14t, +5t,, +3t,.) + r(L1c, + 7¢, +5¢, + 3c,,]+ (L- o)u’)

D = 2_;4[@(67'[4 +22t, + Tt —14t, +6t, +3t,) +r(67¢, +22¢, + 7¢, +6¢, +3¢,] + (1- w)u

ij+2 = i,j+2?

1
u®d = m[co(37t20 +11t,, + 7ty —14t; +5t,, +3t) +r(L1c; +7¢, +5¢, + 3¢, ]+ L)) ,,

i+1,j+2 —

uy = 514[(9(67'[6 +22t, +7t, 14t +6t, +3t) +r(7c, +6¢, +3¢, ]+ (L-w)u’)

i+2,j+2 = 2. j+2
where
t, = h? fi+1,j+17 t= ui(l(l),j + ui(,kj)—l —h? fi,j , 4= ui(fl),j—l + ui(l(l),jﬂ —h? fi+1,j —h? fi,j+l’
t,= ui(B,j—l + ul(t?zj —h? fi+3,j —h? fi+2,j ) t, = ui(fl),j+2 + ui(,kj)+3 —h? fi,j+2’

= ui(g,jﬂ + ui(g,j+3 —h? fi+2,j+l —h? fi+1,j+2’ ts = ui(t%,j+2 + ui(t%,j+3 —h? fi+2,j+2’
t, =t +1, =t +1;, [ :ui(faz,j+l+ui(l<l),j+l_h2 fi+2,j+1_h2 fi,j+1v

to=t+t, L, =L+, t,=t+0;, t,;= ui(fl),j—l +ui(2,j+1_ h? fi+l,j —h? fi+2,j+l7

t,= ui(l(l),j+1 + ui(rl),j+3 —h? fi,j+1 —h? fi+l,j+2’ ts =t +t,

te = ui(rl),j—l +ui(4lr(1),j+3 —h? fi+1,j —h? fi+1,j+2' t, =L+, ty=0+1,

ty= ui(fl),j—l —h? fi+1,j v by = ui(fl),j+3 —h? fi+1,j+2’ t, = ui(fl),jJrl —h? fi,j+l’ t, = ui(f3),j+1 —h? fi+2,j+l’
C = ui(ff}) - ul(l(l) i C, = ui(,kjj.) - ui(,kj)—l' G = ui(tﬂ)—l - ui(j-(:l?, j-1

¢, = uﬁﬁ)ﬂ - Ui(f1),j+1’ C = ui(S,lj)—l - ui(g,j—v Cs = ui(l(f,}lz - ui(l(l),j+2’

C, =C, +C,, C; =C; +C,, Cq =C;+C;, Cy=0C;+Cy,

Cy=Cp+GC; G, =C+Ch.

The convergence rates of the system (1.2) depend on the spectral properties of the coefficient matrix A. A
preconditioner is a matrix that transforms the linear system into one that is equivalent in the sense that it has the
same solution, but that has more favorable spectral properties.

For the nine-point group method, the matrix A, vectors U and f are as defined in (1.2)). Therefore the
precondetioner P, is obtained in the form: P=1+kL ; 1<k <2and then, we can write the preconditioned system
as the following:

P(A)T=Pf = (1+kL)(AT=(1+kL) f 28)

It can be seen that the proposed preconditioned system (2.8) have same solution of the original system but these
proposed scheme has more favorable convergence properties.

3. Numerical Results and Discussions

For comparison purpose, we will use the model problem of Poisson equation in the form [2]:

2 2
VA =a—lzj+a—lj=(x2+y2)exy, (3.1)
ox~ oy
with u(x,00=u(0,y)=1 u(x,)=¢€*, uy)=e’, 0<xy<1.

The exact solution for this problem is u(x,y)=e". In this experimental work, we choose the value of tolerance;

£=10". The computer processing unit is Intel(R) Core(TM) i5 with memory of 4Gb and the software used to
implement and generate the results was Developer C++ Version 4.9.9.2. We have computed the average absolute
errors and record the number of iterations for convergence for different size of grids 45, 85, 105, 145, 185 and 225.

Table 1 shows the comparison of the results for nine-point group AOR and preconditioned nine-point group AOR
iterative methods. The results show the corresponding values of r and optimum w, number of iterations (k), the CPU
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time, and the maximum error (e). In addition, Fig.1 shows the comparison of the number of iterations between these
two methods. The graph explained that the preconditioned nine-point group AOR method gives the minimum
number of iterations and the difference became obvious when the value of N increased.

Table 1. Comparison of number of iterations, execution time N-P AOR and preconditioned N-P AOR
iterative methods

N r W N-P Group AOR Preconditioned N-P Group AOR
k t e k t e

45 1.678 1.673-1.681 30 0.003 2.85E-06 28 0.000 2.74E-06
85 1.784 1.704-1.713 35 0.011 2.87E-06 32 0.000 2.76E-06
105 | 1.871 1.744-1.761 64 0.029 2.89E-06 46 0.012 2.83E-06
145 | 1.895 1.763-1.779 88 0.034 2.37E-06 72 0.019 2.41E-06
185 | 1.931 1.855-1.892 102 0.057 1.99E-06 80 0.038 2.36E-06
225 | 1.934 1.903-1.944 114 0.108 2.36E-06 96 0.088 2.07E-06

Since the convergence of the iteration methods relies on the spectral radius, which is defined as the largest of the
moduli of the eigenvalues of the iteration matrix. It is stated and proven that a linear system with smaller value of
spectral radius will have better convergence rate [7]. Thus, the spectral radius of the coefficient matrix of the
original system and the preconditioned system will be compared in order to justify the performance and suitability
of the preconditioner. Since there are no special theoretical formulas that can be used to determine the spectral
radiuses of the preconditioned matrices, therefore, we use Matlab software to estimate the values of the spectral
radius by the same manner of the work by Saeed [2].

120 -

100 -

80

60 = N-P Group AOR

40 —@— Preconditioned N-P

AOR

45 85 105 145 185

Fig. 1: Comparison of number of iterations (k) for N-P AOR and preconditioned N-P AOR iterative methods
Table 2 and Fig.2 show the comparison of the spectral radius between the original N-P Group AOR and the
preconditioned N-P Group AOR systems. Clearly it can be seen that the spectral radius of the preconditioned
system is smaller compared to the original system, thus justifying our findings.

Table 2: Comparison of spectral radius between the original and the preconditioned linear systems

N Original N-P Group Preconditioned N-P Group
AOR system AOR system
45 0.6851 0.4037
85 0.7944 0.4225
105 0.8252 0.4654
145 0.8804 0.5006
185 0.8957 0.5691
225 0.9342 0.6153
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Furthermore, we can observe that the results reveal the significant improvement in number of iterations and
execution timings of the proposed preconditioned Group iterative method compared to the results obtained in [2].

0.9 -
0.8 - //_—‘
0.7 -

0.6 -

o -___._//l———-’"/- —#—N-PGroup AOR
0.4 +

0.3 + == Preconditioned N-P
AOR

0.2

0.1

0.2 0.4 0.6 0.8 1

Fig. 2: Comparison of spectral radius for N-P AOR and preconditioned N-P AOR iterative methods

4. Conclusion

In this paper, we proposed a new preconditioner in block formulation for the N-P Group AOR iterative method to
accelerate the convergence rate of this group method. From observation of all experimental results by imposing the
N-P AOR and Preconditioned N-P AOR iterative methods, the number of iterations and the execution time for
Preconditioned N-P AOR iterative method have been declined tremendously as compared with the original N-P
AOR iterative method. Furthermore, we can see that our proposed method showed improvements in the number of
iterations and the execution time compared to the earlier Preconditioned N-P SOR introduced by Saeed [2]. For
future work, it would be worthwhile effort to investigate the application of Preconditioned N-P AOR iterative
method for solving other types of equations.
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